02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)
Alternating Current

155153 In LCR series circuit, source voltage is 120 volt, voltage across inductor 50 volt and voltage across resistance is 40 volt, then determine voltage across capacitor.

1 $\mathrm{V}_{\mathrm{C}}=30(5-8 \sqrt{2})$
2 $\mathrm{V}_{\mathrm{C}}=10(5+8 \sqrt{2})$
3 $\mathrm{V}_{\mathrm{C}}=20(5+8 \sqrt{2})$
4 $\mathrm{V}_{\mathrm{C}}=10(5+7 \sqrt{2})$
Alternating Current

155154 In a LCR oscillatory circuit find the energy stored in inductor at resonance, if voltage of source is $10 \mathrm{~V}$ and resistance is $10 \Omega$ and inductance is $1 \mathrm{H}$.

1 $0.5 \mathrm{~J}$
2 $2 \mathrm{~J}$
3 $4 \mathrm{~J}$
4 $10 \mathrm{~J}$
Alternating Current

155155 Frequency of $L-C$ circuit is $f_{1}$. If a resistance $R$ is also added to it in series, the frequency becomes $f_{2}$. The ratio of $\frac{f_{2}}{f_{1}}$ will be:

1 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
2 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{4 \mathrm{~L}}}$
3 $\sqrt{1+\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
4 $\sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{L}}}$
Alternating Current

155158 In $L-C-R, A . C$. series circuit, $L=9 H, R=10 \Omega$ $\& C=100 \mu F$. Hence $Q$-factor of the circuit is

1 25
2 45
3 35
4 30
Alternating Current

155159 When an inductor of inductance $\frac{6}{\pi} \mathrm{H}$, a capacitor of capacitance $\frac{50}{\pi} \mu \mathrm{F}$ and resistor of resistance $R$ are connected in series with an $A C$ supply of rms voltage $220 \mathrm{~V}$ and frequency 50 $\mathrm{Hz}$, the rms current through the circuit is $\mathbf{4 4 0}$ $m A$. Match the inductive reactance, $X_{L}$ the capacitive reactance, $X_{C}$ the resistance $R$ and the impedance $Z$ of the circuit given in List-I with the corresponding values given in List-II.
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| (A) | $\mathrm{X}_{\mathrm{L}}$ | (i) | $200 \Omega$ |
| (B) | $\mathrm{X}_{\mathrm{C}}$ | (ii) | $300 \Omega$ |
| (C) | $\mathrm{Z}$ | (iii) | $500 \Omega$ |
| (D) | $\mathrm{R}$ | (iv) | $600 \Omega$ |

1 (iv) (A) (ii) (B) (i) (C) (iii) (D)
2 (iv) (A) (iii) (B) (i) (C) (ii) (D)
3 (iv) (A) (i) (B) (ii) (C) (iii) (D)
4 (i) (A) (iv) (B) (iii) (C) (ii) (D)