155053
An L-R circuit has a cell of emf. $E$, which is switched $O N$ a time $t=0$. The current in the circuit after a long time will be
1 zero
2 $\frac{E}{R}$
3 $\frac{\mathrm{E}}{\mathrm{L}}$
4 $\frac{E}{\sqrt{L^{2}+R^{2}}}$
Explanation:
B In L-R circuit has a cell of emf $\mathrm{E}$. The growth of current in L-R circuit, the current in the circuit grows exponentially with the time $t=0$. Then maximum value of current, $\mathrm{I}_{0}=\mathrm{E} / \mathrm{R}$
CG PET 2019
Alternating Current
155089
In a $R-L$ circuit reactance offered by the coil is
1 $\omega \mathrm{L}$
2 $\frac{1}{\omega \mathrm{L}}$
3 $\omega \mathrm{RL}$
4 $\omega^{2} \mathrm{~L}$
Explanation:
A In RL circuit, Inductive reactance $X_{\mathrm{L}}=2 \pi \mathrm{fL}$ $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
J and K CET- 1998
Alternating Current
155054
An ac voltage of $100 \mathrm{~V}, \frac{500}{\pi} \mathrm{Hz}$ is connected across a $20 \Omega$ resistor and $15 \mathrm{mH}$ inductor in series. Then the impedance of the circuit is
155057
A charged capacitor $\mathrm{C}=30 \mu \mathrm{F}$ is connected to an inductor $L=27 \mathrm{mH}$. The angular frequency of their oscillations is-
1 $9.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
2 $3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
3 $1.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
4 $0.3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
Explanation:
C Given that, $\mathrm{C}=30 \mu \mathrm{F}=30 \times 10^{-6} \mathrm{~F}$ $\mathrm{L}=27 \mathrm{mH}=27 \times 10^{-3} \mathrm{H}$ Angular frequency of the oscillation is, $\omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{27 \times 10^{-3} \times 30 \times 10^{-6}}}$ $=\frac{1}{9 \times 10^{-4}}=1.11 \times 10^{3} \mathrm{rad} / \mathrm{sec}$
BCECE-2018
Alternating Current
155058
A capacitor ' $C$ ' connected across a D.C. source, the reactance of capacitor will be
1 Zero
2 High
3 Low
4 Infinite
Explanation:
D Reactance of capacitance $X_{C}=\frac{1}{2 \pi f C}$ Where, $\mathrm{f}=0$ for $\mathrm{DC}$ source $\mathrm{X}_{\mathrm{C}}=\infty$
155053
An L-R circuit has a cell of emf. $E$, which is switched $O N$ a time $t=0$. The current in the circuit after a long time will be
1 zero
2 $\frac{E}{R}$
3 $\frac{\mathrm{E}}{\mathrm{L}}$
4 $\frac{E}{\sqrt{L^{2}+R^{2}}}$
Explanation:
B In L-R circuit has a cell of emf $\mathrm{E}$. The growth of current in L-R circuit, the current in the circuit grows exponentially with the time $t=0$. Then maximum value of current, $\mathrm{I}_{0}=\mathrm{E} / \mathrm{R}$
CG PET 2019
Alternating Current
155089
In a $R-L$ circuit reactance offered by the coil is
1 $\omega \mathrm{L}$
2 $\frac{1}{\omega \mathrm{L}}$
3 $\omega \mathrm{RL}$
4 $\omega^{2} \mathrm{~L}$
Explanation:
A In RL circuit, Inductive reactance $X_{\mathrm{L}}=2 \pi \mathrm{fL}$ $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
J and K CET- 1998
Alternating Current
155054
An ac voltage of $100 \mathrm{~V}, \frac{500}{\pi} \mathrm{Hz}$ is connected across a $20 \Omega$ resistor and $15 \mathrm{mH}$ inductor in series. Then the impedance of the circuit is
155057
A charged capacitor $\mathrm{C}=30 \mu \mathrm{F}$ is connected to an inductor $L=27 \mathrm{mH}$. The angular frequency of their oscillations is-
1 $9.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
2 $3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
3 $1.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
4 $0.3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
Explanation:
C Given that, $\mathrm{C}=30 \mu \mathrm{F}=30 \times 10^{-6} \mathrm{~F}$ $\mathrm{L}=27 \mathrm{mH}=27 \times 10^{-3} \mathrm{H}$ Angular frequency of the oscillation is, $\omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{27 \times 10^{-3} \times 30 \times 10^{-6}}}$ $=\frac{1}{9 \times 10^{-4}}=1.11 \times 10^{3} \mathrm{rad} / \mathrm{sec}$
BCECE-2018
Alternating Current
155058
A capacitor ' $C$ ' connected across a D.C. source, the reactance of capacitor will be
1 Zero
2 High
3 Low
4 Infinite
Explanation:
D Reactance of capacitance $X_{C}=\frac{1}{2 \pi f C}$ Where, $\mathrm{f}=0$ for $\mathrm{DC}$ source $\mathrm{X}_{\mathrm{C}}=\infty$
155053
An L-R circuit has a cell of emf. $E$, which is switched $O N$ a time $t=0$. The current in the circuit after a long time will be
1 zero
2 $\frac{E}{R}$
3 $\frac{\mathrm{E}}{\mathrm{L}}$
4 $\frac{E}{\sqrt{L^{2}+R^{2}}}$
Explanation:
B In L-R circuit has a cell of emf $\mathrm{E}$. The growth of current in L-R circuit, the current in the circuit grows exponentially with the time $t=0$. Then maximum value of current, $\mathrm{I}_{0}=\mathrm{E} / \mathrm{R}$
CG PET 2019
Alternating Current
155089
In a $R-L$ circuit reactance offered by the coil is
1 $\omega \mathrm{L}$
2 $\frac{1}{\omega \mathrm{L}}$
3 $\omega \mathrm{RL}$
4 $\omega^{2} \mathrm{~L}$
Explanation:
A In RL circuit, Inductive reactance $X_{\mathrm{L}}=2 \pi \mathrm{fL}$ $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
J and K CET- 1998
Alternating Current
155054
An ac voltage of $100 \mathrm{~V}, \frac{500}{\pi} \mathrm{Hz}$ is connected across a $20 \Omega$ resistor and $15 \mathrm{mH}$ inductor in series. Then the impedance of the circuit is
155057
A charged capacitor $\mathrm{C}=30 \mu \mathrm{F}$ is connected to an inductor $L=27 \mathrm{mH}$. The angular frequency of their oscillations is-
1 $9.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
2 $3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
3 $1.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
4 $0.3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
Explanation:
C Given that, $\mathrm{C}=30 \mu \mathrm{F}=30 \times 10^{-6} \mathrm{~F}$ $\mathrm{L}=27 \mathrm{mH}=27 \times 10^{-3} \mathrm{H}$ Angular frequency of the oscillation is, $\omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{27 \times 10^{-3} \times 30 \times 10^{-6}}}$ $=\frac{1}{9 \times 10^{-4}}=1.11 \times 10^{3} \mathrm{rad} / \mathrm{sec}$
BCECE-2018
Alternating Current
155058
A capacitor ' $C$ ' connected across a D.C. source, the reactance of capacitor will be
1 Zero
2 High
3 Low
4 Infinite
Explanation:
D Reactance of capacitance $X_{C}=\frac{1}{2 \pi f C}$ Where, $\mathrm{f}=0$ for $\mathrm{DC}$ source $\mathrm{X}_{\mathrm{C}}=\infty$
155053
An L-R circuit has a cell of emf. $E$, which is switched $O N$ a time $t=0$. The current in the circuit after a long time will be
1 zero
2 $\frac{E}{R}$
3 $\frac{\mathrm{E}}{\mathrm{L}}$
4 $\frac{E}{\sqrt{L^{2}+R^{2}}}$
Explanation:
B In L-R circuit has a cell of emf $\mathrm{E}$. The growth of current in L-R circuit, the current in the circuit grows exponentially with the time $t=0$. Then maximum value of current, $\mathrm{I}_{0}=\mathrm{E} / \mathrm{R}$
CG PET 2019
Alternating Current
155089
In a $R-L$ circuit reactance offered by the coil is
1 $\omega \mathrm{L}$
2 $\frac{1}{\omega \mathrm{L}}$
3 $\omega \mathrm{RL}$
4 $\omega^{2} \mathrm{~L}$
Explanation:
A In RL circuit, Inductive reactance $X_{\mathrm{L}}=2 \pi \mathrm{fL}$ $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
J and K CET- 1998
Alternating Current
155054
An ac voltage of $100 \mathrm{~V}, \frac{500}{\pi} \mathrm{Hz}$ is connected across a $20 \Omega$ resistor and $15 \mathrm{mH}$ inductor in series. Then the impedance of the circuit is
155057
A charged capacitor $\mathrm{C}=30 \mu \mathrm{F}$ is connected to an inductor $L=27 \mathrm{mH}$. The angular frequency of their oscillations is-
1 $9.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
2 $3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
3 $1.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
4 $0.3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
Explanation:
C Given that, $\mathrm{C}=30 \mu \mathrm{F}=30 \times 10^{-6} \mathrm{~F}$ $\mathrm{L}=27 \mathrm{mH}=27 \times 10^{-3} \mathrm{H}$ Angular frequency of the oscillation is, $\omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{27 \times 10^{-3} \times 30 \times 10^{-6}}}$ $=\frac{1}{9 \times 10^{-4}}=1.11 \times 10^{3} \mathrm{rad} / \mathrm{sec}$
BCECE-2018
Alternating Current
155058
A capacitor ' $C$ ' connected across a D.C. source, the reactance of capacitor will be
1 Zero
2 High
3 Low
4 Infinite
Explanation:
D Reactance of capacitance $X_{C}=\frac{1}{2 \pi f C}$ Where, $\mathrm{f}=0$ for $\mathrm{DC}$ source $\mathrm{X}_{\mathrm{C}}=\infty$
155053
An L-R circuit has a cell of emf. $E$, which is switched $O N$ a time $t=0$. The current in the circuit after a long time will be
1 zero
2 $\frac{E}{R}$
3 $\frac{\mathrm{E}}{\mathrm{L}}$
4 $\frac{E}{\sqrt{L^{2}+R^{2}}}$
Explanation:
B In L-R circuit has a cell of emf $\mathrm{E}$. The growth of current in L-R circuit, the current in the circuit grows exponentially with the time $t=0$. Then maximum value of current, $\mathrm{I}_{0}=\mathrm{E} / \mathrm{R}$
CG PET 2019
Alternating Current
155089
In a $R-L$ circuit reactance offered by the coil is
1 $\omega \mathrm{L}$
2 $\frac{1}{\omega \mathrm{L}}$
3 $\omega \mathrm{RL}$
4 $\omega^{2} \mathrm{~L}$
Explanation:
A In RL circuit, Inductive reactance $X_{\mathrm{L}}=2 \pi \mathrm{fL}$ $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
J and K CET- 1998
Alternating Current
155054
An ac voltage of $100 \mathrm{~V}, \frac{500}{\pi} \mathrm{Hz}$ is connected across a $20 \Omega$ resistor and $15 \mathrm{mH}$ inductor in series. Then the impedance of the circuit is
155057
A charged capacitor $\mathrm{C}=30 \mu \mathrm{F}$ is connected to an inductor $L=27 \mathrm{mH}$. The angular frequency of their oscillations is-
1 $9.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
2 $3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
3 $1.1 \times 10^{3} \mathrm{rad} / \mathrm{s}$
4 $0.3 \times 10^{3} \mathrm{rad} / \mathrm{s}$
Explanation:
C Given that, $\mathrm{C}=30 \mu \mathrm{F}=30 \times 10^{-6} \mathrm{~F}$ $\mathrm{L}=27 \mathrm{mH}=27 \times 10^{-3} \mathrm{H}$ Angular frequency of the oscillation is, $\omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{27 \times 10^{-3} \times 30 \times 10^{-6}}}$ $=\frac{1}{9 \times 10^{-4}}=1.11 \times 10^{3} \mathrm{rad} / \mathrm{sec}$
BCECE-2018
Alternating Current
155058
A capacitor ' $C$ ' connected across a D.C. source, the reactance of capacitor will be
1 Zero
2 High
3 Low
4 Infinite
Explanation:
D Reactance of capacitance $X_{C}=\frac{1}{2 \pi f C}$ Where, $\mathrm{f}=0$ for $\mathrm{DC}$ source $\mathrm{X}_{\mathrm{C}}=\infty$