00. A.C. Voltage in Resistor and Phasor
Alternating Current

154962 A $20 \mathrm{~V} \mathrm{AC}$ is applied to a circuit consisting of a resistor and a coil with negligible resistance. If the voltage across the resistor is $12 \mathrm{~V}$, the voltage across the coil is -

1 $16 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $8 \mathrm{~V}$
4 $6 \mathrm{~V}$
Alternating Current

154963 An alternating current is given by $i=$ $2 \sin \omega t+6 \cos \omega t$. The rms current in amperes is

1 $2 \sqrt{5}$
2 $2 \sqrt{10}$
3 $\sqrt{5}$
4 $10 \sqrt{2}$
Alternating Current

154964 A resistance of $20 \Omega$ is connected to an alternating current source of $110 \mathrm{~V}$. If the frequency of the $\mathrm{AC}$ source is $50 \mathrm{~Hz}$, then the time taken by the current to change from its maximum value to the rms value is

1 $4 \mathrm{~ms}$
2 $2.5 \mathrm{~s}$
3 $2 \mathrm{~s}$
4 $2.5 \mathrm{~ms}$
Alternating Current

154965 In the given circuit the peak voltage across $C, L$ and $R$ are $30 \mathrm{~V}, 110 \mathrm{~V}$ and $60 \mathrm{~V}$ respectively. The rms value of the applied voltage is

1 $100 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $70.7 \mathrm{~V}$
4 $141 \mathrm{~V}$
Alternating Current

154962 A $20 \mathrm{~V} \mathrm{AC}$ is applied to a circuit consisting of a resistor and a coil with negligible resistance. If the voltage across the resistor is $12 \mathrm{~V}$, the voltage across the coil is -

1 $16 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $8 \mathrm{~V}$
4 $6 \mathrm{~V}$
Alternating Current

154963 An alternating current is given by $i=$ $2 \sin \omega t+6 \cos \omega t$. The rms current in amperes is

1 $2 \sqrt{5}$
2 $2 \sqrt{10}$
3 $\sqrt{5}$
4 $10 \sqrt{2}$
Alternating Current

154964 A resistance of $20 \Omega$ is connected to an alternating current source of $110 \mathrm{~V}$. If the frequency of the $\mathrm{AC}$ source is $50 \mathrm{~Hz}$, then the time taken by the current to change from its maximum value to the rms value is

1 $4 \mathrm{~ms}$
2 $2.5 \mathrm{~s}$
3 $2 \mathrm{~s}$
4 $2.5 \mathrm{~ms}$
Alternating Current

154965 In the given circuit the peak voltage across $C, L$ and $R$ are $30 \mathrm{~V}, 110 \mathrm{~V}$ and $60 \mathrm{~V}$ respectively. The rms value of the applied voltage is

1 $100 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $70.7 \mathrm{~V}$
4 $141 \mathrm{~V}$
Alternating Current

154962 A $20 \mathrm{~V} \mathrm{AC}$ is applied to a circuit consisting of a resistor and a coil with negligible resistance. If the voltage across the resistor is $12 \mathrm{~V}$, the voltage across the coil is -

1 $16 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $8 \mathrm{~V}$
4 $6 \mathrm{~V}$
Alternating Current

154963 An alternating current is given by $i=$ $2 \sin \omega t+6 \cos \omega t$. The rms current in amperes is

1 $2 \sqrt{5}$
2 $2 \sqrt{10}$
3 $\sqrt{5}$
4 $10 \sqrt{2}$
Alternating Current

154964 A resistance of $20 \Omega$ is connected to an alternating current source of $110 \mathrm{~V}$. If the frequency of the $\mathrm{AC}$ source is $50 \mathrm{~Hz}$, then the time taken by the current to change from its maximum value to the rms value is

1 $4 \mathrm{~ms}$
2 $2.5 \mathrm{~s}$
3 $2 \mathrm{~s}$
4 $2.5 \mathrm{~ms}$
Alternating Current

154965 In the given circuit the peak voltage across $C, L$ and $R$ are $30 \mathrm{~V}, 110 \mathrm{~V}$ and $60 \mathrm{~V}$ respectively. The rms value of the applied voltage is

1 $100 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $70.7 \mathrm{~V}$
4 $141 \mathrm{~V}$
Alternating Current

154962 A $20 \mathrm{~V} \mathrm{AC}$ is applied to a circuit consisting of a resistor and a coil with negligible resistance. If the voltage across the resistor is $12 \mathrm{~V}$, the voltage across the coil is -

1 $16 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $8 \mathrm{~V}$
4 $6 \mathrm{~V}$
Alternating Current

154963 An alternating current is given by $i=$ $2 \sin \omega t+6 \cos \omega t$. The rms current in amperes is

1 $2 \sqrt{5}$
2 $2 \sqrt{10}$
3 $\sqrt{5}$
4 $10 \sqrt{2}$
Alternating Current

154964 A resistance of $20 \Omega$ is connected to an alternating current source of $110 \mathrm{~V}$. If the frequency of the $\mathrm{AC}$ source is $50 \mathrm{~Hz}$, then the time taken by the current to change from its maximum value to the rms value is

1 $4 \mathrm{~ms}$
2 $2.5 \mathrm{~s}$
3 $2 \mathrm{~s}$
4 $2.5 \mathrm{~ms}$
Alternating Current

154965 In the given circuit the peak voltage across $C, L$ and $R$ are $30 \mathrm{~V}, 110 \mathrm{~V}$ and $60 \mathrm{~V}$ respectively. The rms value of the applied voltage is

1 $100 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $70.7 \mathrm{~V}$
4 $141 \mathrm{~V}$