03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154944 A charge of $10^{-6} \mathrm{C}$ is describing a circular path of radius $1 \mathrm{~cm}$ makings 5 revolution per second. The magnetic induction field at the centre of the circle is :

1 $\pi \times 10^{-10} \mathrm{~T}$
2 $\pi \times 10^{-9} \mathrm{~T}$
3 $\frac{\pi}{2} \times 10^{-10} \mathrm{~T}$
4 $\frac{\pi}{2} \times 10^{-9} \mathrm{~T}$
Electro Magnetic Induction

154945 An inductance $1 \mathrm{H}$ is connected in series with an $\mathrm{AC}$ source of $220 \mathrm{~V}$ and $50 \mathrm{~Hz}$. The inductive reactance (in $\mathrm{ohm}$ ) is

1 $2 \pi$
2 $50 \pi$
3 $100 \pi$
4 $1000 \pi$
Electro Magnetic Induction

154946 The magnetic induction and the intensity of
magnetic field inside an iron core of an electromagnet are $1 \mathrm{~Wb}-\mathrm{m}^{-2}$ and $150 \mathrm{Am}^{-2}$ respectively. The relative permeability of iron is $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right)$

1 $\frac{10^{6}}{4 \pi}$
2 $\frac{10^{6}}{6 \pi}$
3 $\frac{10^{5}}{4 \pi}$
4 $\frac{10^{5}}{6 \pi}$
Electro Magnetic Induction

154947 Two circular coils are made of two identical wires of the same length. If the number of turns in the two coils are 4 and 2 , then the ratio of magnetic inductions at the centre will be

1 $4: 1$
2 $2: 1$
3 $1: 2$
4 $1: 1$
Electro Magnetic Induction

154944 A charge of $10^{-6} \mathrm{C}$ is describing a circular path of radius $1 \mathrm{~cm}$ makings 5 revolution per second. The magnetic induction field at the centre of the circle is :

1 $\pi \times 10^{-10} \mathrm{~T}$
2 $\pi \times 10^{-9} \mathrm{~T}$
3 $\frac{\pi}{2} \times 10^{-10} \mathrm{~T}$
4 $\frac{\pi}{2} \times 10^{-9} \mathrm{~T}$
Electro Magnetic Induction

154945 An inductance $1 \mathrm{H}$ is connected in series with an $\mathrm{AC}$ source of $220 \mathrm{~V}$ and $50 \mathrm{~Hz}$. The inductive reactance (in $\mathrm{ohm}$ ) is

1 $2 \pi$
2 $50 \pi$
3 $100 \pi$
4 $1000 \pi$
Electro Magnetic Induction

154946 The magnetic induction and the intensity of
magnetic field inside an iron core of an electromagnet are $1 \mathrm{~Wb}-\mathrm{m}^{-2}$ and $150 \mathrm{Am}^{-2}$ respectively. The relative permeability of iron is $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right)$

1 $\frac{10^{6}}{4 \pi}$
2 $\frac{10^{6}}{6 \pi}$
3 $\frac{10^{5}}{4 \pi}$
4 $\frac{10^{5}}{6 \pi}$
Electro Magnetic Induction

154947 Two circular coils are made of two identical wires of the same length. If the number of turns in the two coils are 4 and 2 , then the ratio of magnetic inductions at the centre will be

1 $4: 1$
2 $2: 1$
3 $1: 2$
4 $1: 1$
Electro Magnetic Induction

154944 A charge of $10^{-6} \mathrm{C}$ is describing a circular path of radius $1 \mathrm{~cm}$ makings 5 revolution per second. The magnetic induction field at the centre of the circle is :

1 $\pi \times 10^{-10} \mathrm{~T}$
2 $\pi \times 10^{-9} \mathrm{~T}$
3 $\frac{\pi}{2} \times 10^{-10} \mathrm{~T}$
4 $\frac{\pi}{2} \times 10^{-9} \mathrm{~T}$
Electro Magnetic Induction

154945 An inductance $1 \mathrm{H}$ is connected in series with an $\mathrm{AC}$ source of $220 \mathrm{~V}$ and $50 \mathrm{~Hz}$. The inductive reactance (in $\mathrm{ohm}$ ) is

1 $2 \pi$
2 $50 \pi$
3 $100 \pi$
4 $1000 \pi$
Electro Magnetic Induction

154946 The magnetic induction and the intensity of
magnetic field inside an iron core of an electromagnet are $1 \mathrm{~Wb}-\mathrm{m}^{-2}$ and $150 \mathrm{Am}^{-2}$ respectively. The relative permeability of iron is $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right)$

1 $\frac{10^{6}}{4 \pi}$
2 $\frac{10^{6}}{6 \pi}$
3 $\frac{10^{5}}{4 \pi}$
4 $\frac{10^{5}}{6 \pi}$
Electro Magnetic Induction

154947 Two circular coils are made of two identical wires of the same length. If the number of turns in the two coils are 4 and 2 , then the ratio of magnetic inductions at the centre will be

1 $4: 1$
2 $2: 1$
3 $1: 2$
4 $1: 1$
Electro Magnetic Induction

154944 A charge of $10^{-6} \mathrm{C}$ is describing a circular path of radius $1 \mathrm{~cm}$ makings 5 revolution per second. The magnetic induction field at the centre of the circle is :

1 $\pi \times 10^{-10} \mathrm{~T}$
2 $\pi \times 10^{-9} \mathrm{~T}$
3 $\frac{\pi}{2} \times 10^{-10} \mathrm{~T}$
4 $\frac{\pi}{2} \times 10^{-9} \mathrm{~T}$
Electro Magnetic Induction

154945 An inductance $1 \mathrm{H}$ is connected in series with an $\mathrm{AC}$ source of $220 \mathrm{~V}$ and $50 \mathrm{~Hz}$. The inductive reactance (in $\mathrm{ohm}$ ) is

1 $2 \pi$
2 $50 \pi$
3 $100 \pi$
4 $1000 \pi$
Electro Magnetic Induction

154946 The magnetic induction and the intensity of
magnetic field inside an iron core of an electromagnet are $1 \mathrm{~Wb}-\mathrm{m}^{-2}$ and $150 \mathrm{Am}^{-2}$ respectively. The relative permeability of iron is $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right)$

1 $\frac{10^{6}}{4 \pi}$
2 $\frac{10^{6}}{6 \pi}$
3 $\frac{10^{5}}{4 \pi}$
4 $\frac{10^{5}}{6 \pi}$
Electro Magnetic Induction

154947 Two circular coils are made of two identical wires of the same length. If the number of turns in the two coils are 4 and 2 , then the ratio of magnetic inductions at the centre will be

1 $4: 1$
2 $2: 1$
3 $1: 2$
4 $1: 1$