03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154922 A wire of radius $R$ carries a current $I$. The magnetic induction inside the wire, at a distance $\mathbf{r}(\mathbf{r} \lt \mathbf{R})$, is

1 Independent of $\mathrm{R}$
2 Proportional to $\ln \mathrm{R}$
3 Proportional to $r$
4 Proportional to $1 / \mathrm{r}$
Electro Magnetic Induction

154923 In the given figure what will be the coefficient of mutual inductance

1 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{2 \mathrm{~b}}\right)$
2 $\frac{\mu_{0} \mathrm{a}}{\pi} \ln \left(1+\frac{\mathrm{b}}{2 \mathrm{a}}\right)$
3 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{\mathrm{b}}\right)$
4 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{b}}{\mathrm{a}}\right)$
Electro Magnetic Induction

154924 The time constant coil is $3 \mathrm{~m}$ s. When a $90 \Omega$ resistance is joined in series, then the time constant becomes $0.5 \mathrm{~m} \mathrm{~s}$. The inductance and the resistance of the coil are

1 $54 \mathrm{mH}, 10 \Omega$
2 $14 \mathrm{mH}, 42 \Omega$
3 $42 \mathrm{mH}, 14 \Omega$
4 $14 \mathrm{mH}, 60 \Omega$
5 $54 \mathrm{mH}, 18 \Omega$
Electro Magnetic Induction

154925 An electrically charged particle enters into a uniform magnetic induction field in a direction perpendicular to the field with a velocity $v$. Then, it travels

1 in a straight line without acceleration
2 with force in the direction of the field
3 in a circular path with a radius directly proportional to $\mathrm{v}^{2}$
4 in a circular path with a radius directly proportional to its velocity
Electro Magnetic Induction

154926 A square loop of wire, side length $10 \mathrm{~cm}$ is placed at angle of $45^{\circ}$ with a magnetic field that changes uniformly from $0.1 \mathrm{~T}$ to zero in 0.7 seconds. The induced current in the loop (its resistance is $1 \Omega$ ) is

1 $1.0 \mathrm{~mA}$
2 $2.5 \mathrm{~mA}$
3 $3.5 \mathrm{~mA}$
4 $4.0 \mathrm{~mA}$
Electro Magnetic Induction

154922 A wire of radius $R$ carries a current $I$. The magnetic induction inside the wire, at a distance $\mathbf{r}(\mathbf{r} \lt \mathbf{R})$, is

1 Independent of $\mathrm{R}$
2 Proportional to $\ln \mathrm{R}$
3 Proportional to $r$
4 Proportional to $1 / \mathrm{r}$
Electro Magnetic Induction

154923 In the given figure what will be the coefficient of mutual inductance

1 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{2 \mathrm{~b}}\right)$
2 $\frac{\mu_{0} \mathrm{a}}{\pi} \ln \left(1+\frac{\mathrm{b}}{2 \mathrm{a}}\right)$
3 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{\mathrm{b}}\right)$
4 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{b}}{\mathrm{a}}\right)$
Electro Magnetic Induction

154924 The time constant coil is $3 \mathrm{~m}$ s. When a $90 \Omega$ resistance is joined in series, then the time constant becomes $0.5 \mathrm{~m} \mathrm{~s}$. The inductance and the resistance of the coil are

1 $54 \mathrm{mH}, 10 \Omega$
2 $14 \mathrm{mH}, 42 \Omega$
3 $42 \mathrm{mH}, 14 \Omega$
4 $14 \mathrm{mH}, 60 \Omega$
5 $54 \mathrm{mH}, 18 \Omega$
Electro Magnetic Induction

154925 An electrically charged particle enters into a uniform magnetic induction field in a direction perpendicular to the field with a velocity $v$. Then, it travels

1 in a straight line without acceleration
2 with force in the direction of the field
3 in a circular path with a radius directly proportional to $\mathrm{v}^{2}$
4 in a circular path with a radius directly proportional to its velocity
Electro Magnetic Induction

154926 A square loop of wire, side length $10 \mathrm{~cm}$ is placed at angle of $45^{\circ}$ with a magnetic field that changes uniformly from $0.1 \mathrm{~T}$ to zero in 0.7 seconds. The induced current in the loop (its resistance is $1 \Omega$ ) is

1 $1.0 \mathrm{~mA}$
2 $2.5 \mathrm{~mA}$
3 $3.5 \mathrm{~mA}$
4 $4.0 \mathrm{~mA}$
Electro Magnetic Induction

154922 A wire of radius $R$ carries a current $I$. The magnetic induction inside the wire, at a distance $\mathbf{r}(\mathbf{r} \lt \mathbf{R})$, is

1 Independent of $\mathrm{R}$
2 Proportional to $\ln \mathrm{R}$
3 Proportional to $r$
4 Proportional to $1 / \mathrm{r}$
Electro Magnetic Induction

154923 In the given figure what will be the coefficient of mutual inductance

1 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{2 \mathrm{~b}}\right)$
2 $\frac{\mu_{0} \mathrm{a}}{\pi} \ln \left(1+\frac{\mathrm{b}}{2 \mathrm{a}}\right)$
3 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{\mathrm{b}}\right)$
4 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{b}}{\mathrm{a}}\right)$
Electro Magnetic Induction

154924 The time constant coil is $3 \mathrm{~m}$ s. When a $90 \Omega$ resistance is joined in series, then the time constant becomes $0.5 \mathrm{~m} \mathrm{~s}$. The inductance and the resistance of the coil are

1 $54 \mathrm{mH}, 10 \Omega$
2 $14 \mathrm{mH}, 42 \Omega$
3 $42 \mathrm{mH}, 14 \Omega$
4 $14 \mathrm{mH}, 60 \Omega$
5 $54 \mathrm{mH}, 18 \Omega$
Electro Magnetic Induction

154925 An electrically charged particle enters into a uniform magnetic induction field in a direction perpendicular to the field with a velocity $v$. Then, it travels

1 in a straight line without acceleration
2 with force in the direction of the field
3 in a circular path with a radius directly proportional to $\mathrm{v}^{2}$
4 in a circular path with a radius directly proportional to its velocity
Electro Magnetic Induction

154926 A square loop of wire, side length $10 \mathrm{~cm}$ is placed at angle of $45^{\circ}$ with a magnetic field that changes uniformly from $0.1 \mathrm{~T}$ to zero in 0.7 seconds. The induced current in the loop (its resistance is $1 \Omega$ ) is

1 $1.0 \mathrm{~mA}$
2 $2.5 \mathrm{~mA}$
3 $3.5 \mathrm{~mA}$
4 $4.0 \mathrm{~mA}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electro Magnetic Induction

154922 A wire of radius $R$ carries a current $I$. The magnetic induction inside the wire, at a distance $\mathbf{r}(\mathbf{r} \lt \mathbf{R})$, is

1 Independent of $\mathrm{R}$
2 Proportional to $\ln \mathrm{R}$
3 Proportional to $r$
4 Proportional to $1 / \mathrm{r}$
Electro Magnetic Induction

154923 In the given figure what will be the coefficient of mutual inductance

1 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{2 \mathrm{~b}}\right)$
2 $\frac{\mu_{0} \mathrm{a}}{\pi} \ln \left(1+\frac{\mathrm{b}}{2 \mathrm{a}}\right)$
3 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{\mathrm{b}}\right)$
4 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{b}}{\mathrm{a}}\right)$
Electro Magnetic Induction

154924 The time constant coil is $3 \mathrm{~m}$ s. When a $90 \Omega$ resistance is joined in series, then the time constant becomes $0.5 \mathrm{~m} \mathrm{~s}$. The inductance and the resistance of the coil are

1 $54 \mathrm{mH}, 10 \Omega$
2 $14 \mathrm{mH}, 42 \Omega$
3 $42 \mathrm{mH}, 14 \Omega$
4 $14 \mathrm{mH}, 60 \Omega$
5 $54 \mathrm{mH}, 18 \Omega$
Electro Magnetic Induction

154925 An electrically charged particle enters into a uniform magnetic induction field in a direction perpendicular to the field with a velocity $v$. Then, it travels

1 in a straight line without acceleration
2 with force in the direction of the field
3 in a circular path with a radius directly proportional to $\mathrm{v}^{2}$
4 in a circular path with a radius directly proportional to its velocity
Electro Magnetic Induction

154926 A square loop of wire, side length $10 \mathrm{~cm}$ is placed at angle of $45^{\circ}$ with a magnetic field that changes uniformly from $0.1 \mathrm{~T}$ to zero in 0.7 seconds. The induced current in the loop (its resistance is $1 \Omega$ ) is

1 $1.0 \mathrm{~mA}$
2 $2.5 \mathrm{~mA}$
3 $3.5 \mathrm{~mA}$
4 $4.0 \mathrm{~mA}$
Electro Magnetic Induction

154922 A wire of radius $R$ carries a current $I$. The magnetic induction inside the wire, at a distance $\mathbf{r}(\mathbf{r} \lt \mathbf{R})$, is

1 Independent of $\mathrm{R}$
2 Proportional to $\ln \mathrm{R}$
3 Proportional to $r$
4 Proportional to $1 / \mathrm{r}$
Electro Magnetic Induction

154923 In the given figure what will be the coefficient of mutual inductance

1 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{2 \mathrm{~b}}\right)$
2 $\frac{\mu_{0} \mathrm{a}}{\pi} \ln \left(1+\frac{\mathrm{b}}{2 \mathrm{a}}\right)$
3 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{a}}{\mathrm{b}}\right)$
4 $\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln \left(1+\frac{\mathrm{b}}{\mathrm{a}}\right)$
Electro Magnetic Induction

154924 The time constant coil is $3 \mathrm{~m}$ s. When a $90 \Omega$ resistance is joined in series, then the time constant becomes $0.5 \mathrm{~m} \mathrm{~s}$. The inductance and the resistance of the coil are

1 $54 \mathrm{mH}, 10 \Omega$
2 $14 \mathrm{mH}, 42 \Omega$
3 $42 \mathrm{mH}, 14 \Omega$
4 $14 \mathrm{mH}, 60 \Omega$
5 $54 \mathrm{mH}, 18 \Omega$
Electro Magnetic Induction

154925 An electrically charged particle enters into a uniform magnetic induction field in a direction perpendicular to the field with a velocity $v$. Then, it travels

1 in a straight line without acceleration
2 with force in the direction of the field
3 in a circular path with a radius directly proportional to $\mathrm{v}^{2}$
4 in a circular path with a radius directly proportional to its velocity
Electro Magnetic Induction

154926 A square loop of wire, side length $10 \mathrm{~cm}$ is placed at angle of $45^{\circ}$ with a magnetic field that changes uniformly from $0.1 \mathrm{~T}$ to zero in 0.7 seconds. The induced current in the loop (its resistance is $1 \Omega$ ) is

1 $1.0 \mathrm{~mA}$
2 $2.5 \mathrm{~mA}$
3 $3.5 \mathrm{~mA}$
4 $4.0 \mathrm{~mA}$