03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154903 If the current through a coil changes from $1 \mathrm{~A}$ to $3 \mathrm{~A}$ in $0.02 \mathrm{~s}$ to produce an emf of $6 \mathrm{~V}$, then the self-inductance of the coil is

1 $0.12 \mathrm{H}$
2 $0.06 \mathrm{H}$
3 $0.02 \mathrm{H}$
4 $0.01 \mathrm{H}$
Electro Magnetic Induction

154904 Two coils of self-inductances $6 \mathrm{mH}$ and $8 \mathrm{mH}$ are connected in series and are adjusted for highest co-efficient of coupling. Equivalent selfinductance $L$ for the assembly is approximately

1 $50 \mathrm{mH}$
2 $36 \mathrm{mH}$
3 $28 \mathrm{mH}$
4 $18 \mathrm{mH}$
Electro Magnetic Induction

154905 In an inductor of self-inductance $L=2 \mathrm{mH}$, current changes with time according to the relation $I=t^{2} e^{-t}$. At what time emf is zero ?

1 $3 \mathrm{~s}$
2 $4 \mathrm{~s}$
3 I s
4 $2 \mathrm{~s}$
Electro Magnetic Induction

154906 A wire in the form of a square of side a carries a current $i$. Then the magnetic induction at the centre of the square wire is
$\left(\right.$ magnetic permeability of free space $\left.=\mu_{0}\right)$.

1 $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{a}}$
2 $\frac{\mu_{0} \mathrm{i} \sqrt{2}}{\pi \mathrm{a}}$
3 $\frac{2 \sqrt{2} \mu_{0} \mathrm{i}}{\pi \mathrm{a}}$
4 $\frac{\mu_{0} \mathrm{i}}{\sqrt{2} \pi \mathrm{a}}$
Electro Magnetic Induction

154907 Two coils have the mutual inductance $0.05 \mathrm{H}$. The current changes in the first coil as $I=I_{0}$ $\sin \omega t$, where $I_{0}=1 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} / \mathrm{s}$. The maximum emf induced in secondary coil is

1 $2.5 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $6 \pi \mathrm{V}$
4 $5 \pi \mathrm{V}$
Electro Magnetic Induction

154903 If the current through a coil changes from $1 \mathrm{~A}$ to $3 \mathrm{~A}$ in $0.02 \mathrm{~s}$ to produce an emf of $6 \mathrm{~V}$, then the self-inductance of the coil is

1 $0.12 \mathrm{H}$
2 $0.06 \mathrm{H}$
3 $0.02 \mathrm{H}$
4 $0.01 \mathrm{H}$
Electro Magnetic Induction

154904 Two coils of self-inductances $6 \mathrm{mH}$ and $8 \mathrm{mH}$ are connected in series and are adjusted for highest co-efficient of coupling. Equivalent selfinductance $L$ for the assembly is approximately

1 $50 \mathrm{mH}$
2 $36 \mathrm{mH}$
3 $28 \mathrm{mH}$
4 $18 \mathrm{mH}$
Electro Magnetic Induction

154905 In an inductor of self-inductance $L=2 \mathrm{mH}$, current changes with time according to the relation $I=t^{2} e^{-t}$. At what time emf is zero ?

1 $3 \mathrm{~s}$
2 $4 \mathrm{~s}$
3 I s
4 $2 \mathrm{~s}$
Electro Magnetic Induction

154906 A wire in the form of a square of side a carries a current $i$. Then the magnetic induction at the centre of the square wire is
$\left(\right.$ magnetic permeability of free space $\left.=\mu_{0}\right)$.

1 $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{a}}$
2 $\frac{\mu_{0} \mathrm{i} \sqrt{2}}{\pi \mathrm{a}}$
3 $\frac{2 \sqrt{2} \mu_{0} \mathrm{i}}{\pi \mathrm{a}}$
4 $\frac{\mu_{0} \mathrm{i}}{\sqrt{2} \pi \mathrm{a}}$
Electro Magnetic Induction

154907 Two coils have the mutual inductance $0.05 \mathrm{H}$. The current changes in the first coil as $I=I_{0}$ $\sin \omega t$, where $I_{0}=1 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} / \mathrm{s}$. The maximum emf induced in secondary coil is

1 $2.5 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $6 \pi \mathrm{V}$
4 $5 \pi \mathrm{V}$
Electro Magnetic Induction

154903 If the current through a coil changes from $1 \mathrm{~A}$ to $3 \mathrm{~A}$ in $0.02 \mathrm{~s}$ to produce an emf of $6 \mathrm{~V}$, then the self-inductance of the coil is

1 $0.12 \mathrm{H}$
2 $0.06 \mathrm{H}$
3 $0.02 \mathrm{H}$
4 $0.01 \mathrm{H}$
Electro Magnetic Induction

154904 Two coils of self-inductances $6 \mathrm{mH}$ and $8 \mathrm{mH}$ are connected in series and are adjusted for highest co-efficient of coupling. Equivalent selfinductance $L$ for the assembly is approximately

1 $50 \mathrm{mH}$
2 $36 \mathrm{mH}$
3 $28 \mathrm{mH}$
4 $18 \mathrm{mH}$
Electro Magnetic Induction

154905 In an inductor of self-inductance $L=2 \mathrm{mH}$, current changes with time according to the relation $I=t^{2} e^{-t}$. At what time emf is zero ?

1 $3 \mathrm{~s}$
2 $4 \mathrm{~s}$
3 I s
4 $2 \mathrm{~s}$
Electro Magnetic Induction

154906 A wire in the form of a square of side a carries a current $i$. Then the magnetic induction at the centre of the square wire is
$\left(\right.$ magnetic permeability of free space $\left.=\mu_{0}\right)$.

1 $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{a}}$
2 $\frac{\mu_{0} \mathrm{i} \sqrt{2}}{\pi \mathrm{a}}$
3 $\frac{2 \sqrt{2} \mu_{0} \mathrm{i}}{\pi \mathrm{a}}$
4 $\frac{\mu_{0} \mathrm{i}}{\sqrt{2} \pi \mathrm{a}}$
Electro Magnetic Induction

154907 Two coils have the mutual inductance $0.05 \mathrm{H}$. The current changes in the first coil as $I=I_{0}$ $\sin \omega t$, where $I_{0}=1 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} / \mathrm{s}$. The maximum emf induced in secondary coil is

1 $2.5 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $6 \pi \mathrm{V}$
4 $5 \pi \mathrm{V}$
Electro Magnetic Induction

154903 If the current through a coil changes from $1 \mathrm{~A}$ to $3 \mathrm{~A}$ in $0.02 \mathrm{~s}$ to produce an emf of $6 \mathrm{~V}$, then the self-inductance of the coil is

1 $0.12 \mathrm{H}$
2 $0.06 \mathrm{H}$
3 $0.02 \mathrm{H}$
4 $0.01 \mathrm{H}$
Electro Magnetic Induction

154904 Two coils of self-inductances $6 \mathrm{mH}$ and $8 \mathrm{mH}$ are connected in series and are adjusted for highest co-efficient of coupling. Equivalent selfinductance $L$ for the assembly is approximately

1 $50 \mathrm{mH}$
2 $36 \mathrm{mH}$
3 $28 \mathrm{mH}$
4 $18 \mathrm{mH}$
Electro Magnetic Induction

154905 In an inductor of self-inductance $L=2 \mathrm{mH}$, current changes with time according to the relation $I=t^{2} e^{-t}$. At what time emf is zero ?

1 $3 \mathrm{~s}$
2 $4 \mathrm{~s}$
3 I s
4 $2 \mathrm{~s}$
Electro Magnetic Induction

154906 A wire in the form of a square of side a carries a current $i$. Then the magnetic induction at the centre of the square wire is
$\left(\right.$ magnetic permeability of free space $\left.=\mu_{0}\right)$.

1 $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{a}}$
2 $\frac{\mu_{0} \mathrm{i} \sqrt{2}}{\pi \mathrm{a}}$
3 $\frac{2 \sqrt{2} \mu_{0} \mathrm{i}}{\pi \mathrm{a}}$
4 $\frac{\mu_{0} \mathrm{i}}{\sqrt{2} \pi \mathrm{a}}$
Electro Magnetic Induction

154907 Two coils have the mutual inductance $0.05 \mathrm{H}$. The current changes in the first coil as $I=I_{0}$ $\sin \omega t$, where $I_{0}=1 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} / \mathrm{s}$. The maximum emf induced in secondary coil is

1 $2.5 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $6 \pi \mathrm{V}$
4 $5 \pi \mathrm{V}$
Electro Magnetic Induction

154903 If the current through a coil changes from $1 \mathrm{~A}$ to $3 \mathrm{~A}$ in $0.02 \mathrm{~s}$ to produce an emf of $6 \mathrm{~V}$, then the self-inductance of the coil is

1 $0.12 \mathrm{H}$
2 $0.06 \mathrm{H}$
3 $0.02 \mathrm{H}$
4 $0.01 \mathrm{H}$
Electro Magnetic Induction

154904 Two coils of self-inductances $6 \mathrm{mH}$ and $8 \mathrm{mH}$ are connected in series and are adjusted for highest co-efficient of coupling. Equivalent selfinductance $L$ for the assembly is approximately

1 $50 \mathrm{mH}$
2 $36 \mathrm{mH}$
3 $28 \mathrm{mH}$
4 $18 \mathrm{mH}$
Electro Magnetic Induction

154905 In an inductor of self-inductance $L=2 \mathrm{mH}$, current changes with time according to the relation $I=t^{2} e^{-t}$. At what time emf is zero ?

1 $3 \mathrm{~s}$
2 $4 \mathrm{~s}$
3 I s
4 $2 \mathrm{~s}$
Electro Magnetic Induction

154906 A wire in the form of a square of side a carries a current $i$. Then the magnetic induction at the centre of the square wire is
$\left(\right.$ magnetic permeability of free space $\left.=\mu_{0}\right)$.

1 $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{a}}$
2 $\frac{\mu_{0} \mathrm{i} \sqrt{2}}{\pi \mathrm{a}}$
3 $\frac{2 \sqrt{2} \mu_{0} \mathrm{i}}{\pi \mathrm{a}}$
4 $\frac{\mu_{0} \mathrm{i}}{\sqrt{2} \pi \mathrm{a}}$
Electro Magnetic Induction

154907 Two coils have the mutual inductance $0.05 \mathrm{H}$. The current changes in the first coil as $I=I_{0}$ $\sin \omega t$, where $I_{0}=1 \mathrm{~A}$ and $\omega=100 \pi \mathrm{rad} / \mathrm{s}$. The maximum emf induced in secondary coil is

1 $2.5 \mathrm{~V}$
2 $10 \mathrm{~V}$
3 $6 \pi \mathrm{V}$
4 $5 \pi \mathrm{V}$