03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154804 Two infinite long wires each carrying a current $10 \mathrm{~A}$ are bend to form a right angle as shown in the figure. Then the magnetic induction at ' $O$ ' is $\left[\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right]$

1 $1 \times 10^{-3} \mathrm{~T}$
2 $1 \times 10^{-4} \mathrm{~T}$
3 $3 \times 10^{-4} \mathrm{~T}$
4 0
Electro Magnetic Induction

154806 The current in a coil of $L=40 \mathrm{mH}$ is to be increased uniformly from $1 \mathrm{~A}$ to $11 \mathrm{~A}$ in $4 \mathrm{milli}$ sec. The induced e.m.f. will be

1 $100 \mathrm{~V}$
2 $0.4 \mathrm{~V}$
3 $440 \mathrm{~V}$
4 $40 \mathrm{~V}$
Electro Magnetic Induction

154807 A wire loop PQRSP formed by joining two semicircular wires of radii $R_{1}$ and $R_{2}$ carries a current $I$ as shown in figure below. The magnitude of magnetic induction at centre $C$ is.

1 $\left(\frac{\mu_{0} I}{4}\right)\left[\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{1}}\right]$
2 $\left(\frac{\mu_{0} \mathrm{I}}{4}\right)\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right]$
3 $\mu_{0} \mathrm{I}\left[\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{1}}\right]$
4 $\mu_{0} \mathrm{I}\left(\frac{1}{\mathrm{R}_{1}}\right)$
Electro Magnetic Induction

154808 Radii of two conducting circular loops are $b$ and a respectively, where $b>>$ a. Centre's of both loops coincide but planes of both loops are perpendicular to each other. The value of mutual inductance for these loops

1 $\frac{\mu_{0} \pi b^{2}}{2 a}$
2 zero
3 $\frac{\mu_{0} \pi \mathrm{ab}}{2(\mathrm{a}+\mathrm{b})}$
4 $\frac{\mu_{0} \pi \mathrm{a}^{2}}{2 \mathrm{~b}}$
Electro Magnetic Induction

154804 Two infinite long wires each carrying a current $10 \mathrm{~A}$ are bend to form a right angle as shown in the figure. Then the magnetic induction at ' $O$ ' is $\left[\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right]$

1 $1 \times 10^{-3} \mathrm{~T}$
2 $1 \times 10^{-4} \mathrm{~T}$
3 $3 \times 10^{-4} \mathrm{~T}$
4 0
Electro Magnetic Induction

154806 The current in a coil of $L=40 \mathrm{mH}$ is to be increased uniformly from $1 \mathrm{~A}$ to $11 \mathrm{~A}$ in $4 \mathrm{milli}$ sec. The induced e.m.f. will be

1 $100 \mathrm{~V}$
2 $0.4 \mathrm{~V}$
3 $440 \mathrm{~V}$
4 $40 \mathrm{~V}$
Electro Magnetic Induction

154807 A wire loop PQRSP formed by joining two semicircular wires of radii $R_{1}$ and $R_{2}$ carries a current $I$ as shown in figure below. The magnitude of magnetic induction at centre $C$ is.

1 $\left(\frac{\mu_{0} I}{4}\right)\left[\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{1}}\right]$
2 $\left(\frac{\mu_{0} \mathrm{I}}{4}\right)\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right]$
3 $\mu_{0} \mathrm{I}\left[\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{1}}\right]$
4 $\mu_{0} \mathrm{I}\left(\frac{1}{\mathrm{R}_{1}}\right)$
Electro Magnetic Induction

154808 Radii of two conducting circular loops are $b$ and a respectively, where $b>>$ a. Centre's of both loops coincide but planes of both loops are perpendicular to each other. The value of mutual inductance for these loops

1 $\frac{\mu_{0} \pi b^{2}}{2 a}$
2 zero
3 $\frac{\mu_{0} \pi \mathrm{ab}}{2(\mathrm{a}+\mathrm{b})}$
4 $\frac{\mu_{0} \pi \mathrm{a}^{2}}{2 \mathrm{~b}}$
Electro Magnetic Induction

154804 Two infinite long wires each carrying a current $10 \mathrm{~A}$ are bend to form a right angle as shown in the figure. Then the magnetic induction at ' $O$ ' is $\left[\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right]$

1 $1 \times 10^{-3} \mathrm{~T}$
2 $1 \times 10^{-4} \mathrm{~T}$
3 $3 \times 10^{-4} \mathrm{~T}$
4 0
Electro Magnetic Induction

154806 The current in a coil of $L=40 \mathrm{mH}$ is to be increased uniformly from $1 \mathrm{~A}$ to $11 \mathrm{~A}$ in $4 \mathrm{milli}$ sec. The induced e.m.f. will be

1 $100 \mathrm{~V}$
2 $0.4 \mathrm{~V}$
3 $440 \mathrm{~V}$
4 $40 \mathrm{~V}$
Electro Magnetic Induction

154807 A wire loop PQRSP formed by joining two semicircular wires of radii $R_{1}$ and $R_{2}$ carries a current $I$ as shown in figure below. The magnitude of magnetic induction at centre $C$ is.

1 $\left(\frac{\mu_{0} I}{4}\right)\left[\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{1}}\right]$
2 $\left(\frac{\mu_{0} \mathrm{I}}{4}\right)\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right]$
3 $\mu_{0} \mathrm{I}\left[\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{1}}\right]$
4 $\mu_{0} \mathrm{I}\left(\frac{1}{\mathrm{R}_{1}}\right)$
Electro Magnetic Induction

154808 Radii of two conducting circular loops are $b$ and a respectively, where $b>>$ a. Centre's of both loops coincide but planes of both loops are perpendicular to each other. The value of mutual inductance for these loops

1 $\frac{\mu_{0} \pi b^{2}}{2 a}$
2 zero
3 $\frac{\mu_{0} \pi \mathrm{ab}}{2(\mathrm{a}+\mathrm{b})}$
4 $\frac{\mu_{0} \pi \mathrm{a}^{2}}{2 \mathrm{~b}}$
Electro Magnetic Induction

154804 Two infinite long wires each carrying a current $10 \mathrm{~A}$ are bend to form a right angle as shown in the figure. Then the magnetic induction at ' $O$ ' is $\left[\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}\right]$

1 $1 \times 10^{-3} \mathrm{~T}$
2 $1 \times 10^{-4} \mathrm{~T}$
3 $3 \times 10^{-4} \mathrm{~T}$
4 0
Electro Magnetic Induction

154806 The current in a coil of $L=40 \mathrm{mH}$ is to be increased uniformly from $1 \mathrm{~A}$ to $11 \mathrm{~A}$ in $4 \mathrm{milli}$ sec. The induced e.m.f. will be

1 $100 \mathrm{~V}$
2 $0.4 \mathrm{~V}$
3 $440 \mathrm{~V}$
4 $40 \mathrm{~V}$
Electro Magnetic Induction

154807 A wire loop PQRSP formed by joining two semicircular wires of radii $R_{1}$ and $R_{2}$ carries a current $I$ as shown in figure below. The magnitude of magnetic induction at centre $C$ is.

1 $\left(\frac{\mu_{0} I}{4}\right)\left[\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{1}}\right]$
2 $\left(\frac{\mu_{0} \mathrm{I}}{4}\right)\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right]$
3 $\mu_{0} \mathrm{I}\left[\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{1}}\right]$
4 $\mu_{0} \mathrm{I}\left(\frac{1}{\mathrm{R}_{1}}\right)$
Electro Magnetic Induction

154808 Radii of two conducting circular loops are $b$ and a respectively, where $b>>$ a. Centre's of both loops coincide but planes of both loops are perpendicular to each other. The value of mutual inductance for these loops

1 $\frac{\mu_{0} \pi b^{2}}{2 a}$
2 zero
3 $\frac{\mu_{0} \pi \mathrm{ab}}{2(\mathrm{a}+\mathrm{b})}$
4 $\frac{\mu_{0} \pi \mathrm{a}^{2}}{2 \mathrm{~b}}$