03. Inductance (Self and Mutual Induction)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electro Magnetic Induction

154784 Consider a current in a circuit falls from 6.0 $\mathrm{A}$ to $1.0 \mathrm{~A}$ in $0.2 \mathrm{~s}$. If an average emf of $150 \mathrm{~V}$ is induced by the circuit, then the self inductance of the circuit is

1 $2 \mathrm{H}$
2 $6 \mathrm{H}$
3 $4 \mathrm{H}$
4 $8 \mathrm{H}$
Electro Magnetic Induction

154785 Consider a toroid with rectangular cross section, of inner radius $a$, outer radius $b$ and height $h$, carrying n number of turns. Then the self-inductance of the toroidal coil when current $I$ passing through the toroid is

1 $\frac{\mu_{0} n^{2} h}{2 \pi} \ln \left(\frac{b}{a}\right)$
2 $\frac{\mu_{0} \mathrm{nh}}{2 \pi} \ln \left(\frac{\mathrm{b}}{\mathrm{a}}\right)$
3 $\frac{\mu_{0} \mathrm{n}^{2} \mathrm{~h}}{2 \pi} \ln \left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
4 $\frac{\mu_{0} \mathrm{nh}}{2 \pi} \ln \left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
Electro Magnetic Induction

154786 A coil is connected to an AC source with peak emf, $8 V$ and frequency $\frac{30}{\pi} \mathrm{Hz}$. The coil has resistance of $8 \Omega$. If the average power dissipated by the coil is $0.4 \mathrm{~W}$, then the inductance of the coil is

1 $0.8 \mathrm{H}$
2 $2.0 \mathrm{H}$
3 $1.4 \mathrm{H}$
4 $0.4 \mathrm{H}$
Electro Magnetic Induction

154787 The magnetic potential energy stored in a certain inductor is $25 \mathrm{~mJ}$, when the current in the inductor is $60 \mathrm{~mA}$. This inductor is of inductance

1 $1.389 \mathrm{H}$
2 $138.88 \mathrm{H}$
3 $0.138 \mathrm{H}$
4 $13.89 \mathrm{H}$
Electro Magnetic Induction

154784 Consider a current in a circuit falls from 6.0 $\mathrm{A}$ to $1.0 \mathrm{~A}$ in $0.2 \mathrm{~s}$. If an average emf of $150 \mathrm{~V}$ is induced by the circuit, then the self inductance of the circuit is

1 $2 \mathrm{H}$
2 $6 \mathrm{H}$
3 $4 \mathrm{H}$
4 $8 \mathrm{H}$
Electro Magnetic Induction

154785 Consider a toroid with rectangular cross section, of inner radius $a$, outer radius $b$ and height $h$, carrying n number of turns. Then the self-inductance of the toroidal coil when current $I$ passing through the toroid is

1 $\frac{\mu_{0} n^{2} h}{2 \pi} \ln \left(\frac{b}{a}\right)$
2 $\frac{\mu_{0} \mathrm{nh}}{2 \pi} \ln \left(\frac{\mathrm{b}}{\mathrm{a}}\right)$
3 $\frac{\mu_{0} \mathrm{n}^{2} \mathrm{~h}}{2 \pi} \ln \left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
4 $\frac{\mu_{0} \mathrm{nh}}{2 \pi} \ln \left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
Electro Magnetic Induction

154786 A coil is connected to an AC source with peak emf, $8 V$ and frequency $\frac{30}{\pi} \mathrm{Hz}$. The coil has resistance of $8 \Omega$. If the average power dissipated by the coil is $0.4 \mathrm{~W}$, then the inductance of the coil is

1 $0.8 \mathrm{H}$
2 $2.0 \mathrm{H}$
3 $1.4 \mathrm{H}$
4 $0.4 \mathrm{H}$
Electro Magnetic Induction

154787 The magnetic potential energy stored in a certain inductor is $25 \mathrm{~mJ}$, when the current in the inductor is $60 \mathrm{~mA}$. This inductor is of inductance

1 $1.389 \mathrm{H}$
2 $138.88 \mathrm{H}$
3 $0.138 \mathrm{H}$
4 $13.89 \mathrm{H}$
Electro Magnetic Induction

154784 Consider a current in a circuit falls from 6.0 $\mathrm{A}$ to $1.0 \mathrm{~A}$ in $0.2 \mathrm{~s}$. If an average emf of $150 \mathrm{~V}$ is induced by the circuit, then the self inductance of the circuit is

1 $2 \mathrm{H}$
2 $6 \mathrm{H}$
3 $4 \mathrm{H}$
4 $8 \mathrm{H}$
Electro Magnetic Induction

154785 Consider a toroid with rectangular cross section, of inner radius $a$, outer radius $b$ and height $h$, carrying n number of turns. Then the self-inductance of the toroidal coil when current $I$ passing through the toroid is

1 $\frac{\mu_{0} n^{2} h}{2 \pi} \ln \left(\frac{b}{a}\right)$
2 $\frac{\mu_{0} \mathrm{nh}}{2 \pi} \ln \left(\frac{\mathrm{b}}{\mathrm{a}}\right)$
3 $\frac{\mu_{0} \mathrm{n}^{2} \mathrm{~h}}{2 \pi} \ln \left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
4 $\frac{\mu_{0} \mathrm{nh}}{2 \pi} \ln \left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
Electro Magnetic Induction

154786 A coil is connected to an AC source with peak emf, $8 V$ and frequency $\frac{30}{\pi} \mathrm{Hz}$. The coil has resistance of $8 \Omega$. If the average power dissipated by the coil is $0.4 \mathrm{~W}$, then the inductance of the coil is

1 $0.8 \mathrm{H}$
2 $2.0 \mathrm{H}$
3 $1.4 \mathrm{H}$
4 $0.4 \mathrm{H}$
Electro Magnetic Induction

154787 The magnetic potential energy stored in a certain inductor is $25 \mathrm{~mJ}$, when the current in the inductor is $60 \mathrm{~mA}$. This inductor is of inductance

1 $1.389 \mathrm{H}$
2 $138.88 \mathrm{H}$
3 $0.138 \mathrm{H}$
4 $13.89 \mathrm{H}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electro Magnetic Induction

154784 Consider a current in a circuit falls from 6.0 $\mathrm{A}$ to $1.0 \mathrm{~A}$ in $0.2 \mathrm{~s}$. If an average emf of $150 \mathrm{~V}$ is induced by the circuit, then the self inductance of the circuit is

1 $2 \mathrm{H}$
2 $6 \mathrm{H}$
3 $4 \mathrm{H}$
4 $8 \mathrm{H}$
Electro Magnetic Induction

154785 Consider a toroid with rectangular cross section, of inner radius $a$, outer radius $b$ and height $h$, carrying n number of turns. Then the self-inductance of the toroidal coil when current $I$ passing through the toroid is

1 $\frac{\mu_{0} n^{2} h}{2 \pi} \ln \left(\frac{b}{a}\right)$
2 $\frac{\mu_{0} \mathrm{nh}}{2 \pi} \ln \left(\frac{\mathrm{b}}{\mathrm{a}}\right)$
3 $\frac{\mu_{0} \mathrm{n}^{2} \mathrm{~h}}{2 \pi} \ln \left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
4 $\frac{\mu_{0} \mathrm{nh}}{2 \pi} \ln \left(\frac{\mathrm{a}}{\mathrm{b}}\right)$
Electro Magnetic Induction

154786 A coil is connected to an AC source with peak emf, $8 V$ and frequency $\frac{30}{\pi} \mathrm{Hz}$. The coil has resistance of $8 \Omega$. If the average power dissipated by the coil is $0.4 \mathrm{~W}$, then the inductance of the coil is

1 $0.8 \mathrm{H}$
2 $2.0 \mathrm{H}$
3 $1.4 \mathrm{H}$
4 $0.4 \mathrm{H}$
Electro Magnetic Induction

154787 The magnetic potential energy stored in a certain inductor is $25 \mathrm{~mJ}$, when the current in the inductor is $60 \mathrm{~mA}$. This inductor is of inductance

1 $1.389 \mathrm{H}$
2 $138.88 \mathrm{H}$
3 $0.138 \mathrm{H}$
4 $13.89 \mathrm{H}$