03. Inductance (Self and Mutual Induction)
Electro Magnetic Induction

154762 The mutual inductance between two coils is 0.09 Henry. If the current in the primary coil changes from 0 to $20 \mathrm{~A}$ in $0.006 \mathrm{~s}$, the e.m.f. induced in the secondary coil at that instant is

1 $120 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $180 \mathrm{~V}$
4 $300 \mathrm{~V}$
Electro Magnetic Induction

154763 Two coaxial coils $A$ and $B$ of radii ' $R_{1}$ ' and ' $R_{2}$ ' are placed in the same plane. $\left(R_{2}>R_{1}\right)$. If a current is passed through coil $B$, the coefficient of mutual inductance between the coils is proportional to

1 $\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}}$
2 $\frac{\mathrm{R}_{2}^{2}}{\mathrm{R}_{1}}$
3 $\frac{1}{R_{1} R_{2}}$
4 $\mathrm{R}_{1} \mathrm{R}_{2}$
Electro Magnetic Induction

154764 A current $I=10 \sin (50 \pi t)$ ampere is passed in the first coil which induces a maximum e.m.f. of $5 \pi$ volt in the second coil. The mutual inductance between the coils is

1 $5 \mathrm{mH}$
2 $1 \mathrm{mH}$
3 $0.1 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154765 A toroidal solenoid with air core has an average radius ' $R$ ', number of turns ' $N$ ' and area of cross-section ' $A$ '. The self-inductance of the solenoid is (Neglect the field variation across-section of the toroid)

1 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{\mathrm{R}}$
2 $\frac{\mu_{0} \mathrm{NA}}{2 \pi \mathrm{R}}$
3 $\frac{\mu_{0} \mathrm{NA}}{\mathrm{R}}$
4 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{2 \pi \mathrm{R}}$
Electro Magnetic Induction

154767 Two coils $P$ and $Q$ have mutual inductance ' $M$ ' $H$. If the current in the primary is $I=I_{0} \sin \omega t$, then the maximum value of e.m.f. induced in coil $Q$ is

1 $\frac{M}{I_{0} \omega}$
2 $\mathrm{I}_{0} \mathrm{M} \omega$
3 $\frac{\mathrm{I}_{0}}{\mathrm{M} \omega}$
4 $\frac{\omega}{\mathrm{I}_{0} \mathrm{M}}$
Electro Magnetic Induction

154762 The mutual inductance between two coils is 0.09 Henry. If the current in the primary coil changes from 0 to $20 \mathrm{~A}$ in $0.006 \mathrm{~s}$, the e.m.f. induced in the secondary coil at that instant is

1 $120 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $180 \mathrm{~V}$
4 $300 \mathrm{~V}$
Electro Magnetic Induction

154763 Two coaxial coils $A$ and $B$ of radii ' $R_{1}$ ' and ' $R_{2}$ ' are placed in the same plane. $\left(R_{2}>R_{1}\right)$. If a current is passed through coil $B$, the coefficient of mutual inductance between the coils is proportional to

1 $\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}}$
2 $\frac{\mathrm{R}_{2}^{2}}{\mathrm{R}_{1}}$
3 $\frac{1}{R_{1} R_{2}}$
4 $\mathrm{R}_{1} \mathrm{R}_{2}$
Electro Magnetic Induction

154764 A current $I=10 \sin (50 \pi t)$ ampere is passed in the first coil which induces a maximum e.m.f. of $5 \pi$ volt in the second coil. The mutual inductance between the coils is

1 $5 \mathrm{mH}$
2 $1 \mathrm{mH}$
3 $0.1 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154765 A toroidal solenoid with air core has an average radius ' $R$ ', number of turns ' $N$ ' and area of cross-section ' $A$ '. The self-inductance of the solenoid is (Neglect the field variation across-section of the toroid)

1 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{\mathrm{R}}$
2 $\frac{\mu_{0} \mathrm{NA}}{2 \pi \mathrm{R}}$
3 $\frac{\mu_{0} \mathrm{NA}}{\mathrm{R}}$
4 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{2 \pi \mathrm{R}}$
Electro Magnetic Induction

154767 Two coils $P$ and $Q$ have mutual inductance ' $M$ ' $H$. If the current in the primary is $I=I_{0} \sin \omega t$, then the maximum value of e.m.f. induced in coil $Q$ is

1 $\frac{M}{I_{0} \omega}$
2 $\mathrm{I}_{0} \mathrm{M} \omega$
3 $\frac{\mathrm{I}_{0}}{\mathrm{M} \omega}$
4 $\frac{\omega}{\mathrm{I}_{0} \mathrm{M}}$
Electro Magnetic Induction

154762 The mutual inductance between two coils is 0.09 Henry. If the current in the primary coil changes from 0 to $20 \mathrm{~A}$ in $0.006 \mathrm{~s}$, the e.m.f. induced in the secondary coil at that instant is

1 $120 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $180 \mathrm{~V}$
4 $300 \mathrm{~V}$
Electro Magnetic Induction

154763 Two coaxial coils $A$ and $B$ of radii ' $R_{1}$ ' and ' $R_{2}$ ' are placed in the same plane. $\left(R_{2}>R_{1}\right)$. If a current is passed through coil $B$, the coefficient of mutual inductance between the coils is proportional to

1 $\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}}$
2 $\frac{\mathrm{R}_{2}^{2}}{\mathrm{R}_{1}}$
3 $\frac{1}{R_{1} R_{2}}$
4 $\mathrm{R}_{1} \mathrm{R}_{2}$
Electro Magnetic Induction

154764 A current $I=10 \sin (50 \pi t)$ ampere is passed in the first coil which induces a maximum e.m.f. of $5 \pi$ volt in the second coil. The mutual inductance between the coils is

1 $5 \mathrm{mH}$
2 $1 \mathrm{mH}$
3 $0.1 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154765 A toroidal solenoid with air core has an average radius ' $R$ ', number of turns ' $N$ ' and area of cross-section ' $A$ '. The self-inductance of the solenoid is (Neglect the field variation across-section of the toroid)

1 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{\mathrm{R}}$
2 $\frac{\mu_{0} \mathrm{NA}}{2 \pi \mathrm{R}}$
3 $\frac{\mu_{0} \mathrm{NA}}{\mathrm{R}}$
4 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{2 \pi \mathrm{R}}$
Electro Magnetic Induction

154767 Two coils $P$ and $Q$ have mutual inductance ' $M$ ' $H$. If the current in the primary is $I=I_{0} \sin \omega t$, then the maximum value of e.m.f. induced in coil $Q$ is

1 $\frac{M}{I_{0} \omega}$
2 $\mathrm{I}_{0} \mathrm{M} \omega$
3 $\frac{\mathrm{I}_{0}}{\mathrm{M} \omega}$
4 $\frac{\omega}{\mathrm{I}_{0} \mathrm{M}}$
Electro Magnetic Induction

154762 The mutual inductance between two coils is 0.09 Henry. If the current in the primary coil changes from 0 to $20 \mathrm{~A}$ in $0.006 \mathrm{~s}$, the e.m.f. induced in the secondary coil at that instant is

1 $120 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $180 \mathrm{~V}$
4 $300 \mathrm{~V}$
Electro Magnetic Induction

154763 Two coaxial coils $A$ and $B$ of radii ' $R_{1}$ ' and ' $R_{2}$ ' are placed in the same plane. $\left(R_{2}>R_{1}\right)$. If a current is passed through coil $B$, the coefficient of mutual inductance between the coils is proportional to

1 $\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}}$
2 $\frac{\mathrm{R}_{2}^{2}}{\mathrm{R}_{1}}$
3 $\frac{1}{R_{1} R_{2}}$
4 $\mathrm{R}_{1} \mathrm{R}_{2}$
Electro Magnetic Induction

154764 A current $I=10 \sin (50 \pi t)$ ampere is passed in the first coil which induces a maximum e.m.f. of $5 \pi$ volt in the second coil. The mutual inductance between the coils is

1 $5 \mathrm{mH}$
2 $1 \mathrm{mH}$
3 $0.1 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154765 A toroidal solenoid with air core has an average radius ' $R$ ', number of turns ' $N$ ' and area of cross-section ' $A$ '. The self-inductance of the solenoid is (Neglect the field variation across-section of the toroid)

1 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{\mathrm{R}}$
2 $\frac{\mu_{0} \mathrm{NA}}{2 \pi \mathrm{R}}$
3 $\frac{\mu_{0} \mathrm{NA}}{\mathrm{R}}$
4 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{2 \pi \mathrm{R}}$
Electro Magnetic Induction

154767 Two coils $P$ and $Q$ have mutual inductance ' $M$ ' $H$. If the current in the primary is $I=I_{0} \sin \omega t$, then the maximum value of e.m.f. induced in coil $Q$ is

1 $\frac{M}{I_{0} \omega}$
2 $\mathrm{I}_{0} \mathrm{M} \omega$
3 $\frac{\mathrm{I}_{0}}{\mathrm{M} \omega}$
4 $\frac{\omega}{\mathrm{I}_{0} \mathrm{M}}$
Electro Magnetic Induction

154762 The mutual inductance between two coils is 0.09 Henry. If the current in the primary coil changes from 0 to $20 \mathrm{~A}$ in $0.006 \mathrm{~s}$, the e.m.f. induced in the secondary coil at that instant is

1 $120 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $180 \mathrm{~V}$
4 $300 \mathrm{~V}$
Electro Magnetic Induction

154763 Two coaxial coils $A$ and $B$ of radii ' $R_{1}$ ' and ' $R_{2}$ ' are placed in the same plane. $\left(R_{2}>R_{1}\right)$. If a current is passed through coil $B$, the coefficient of mutual inductance between the coils is proportional to

1 $\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}}$
2 $\frac{\mathrm{R}_{2}^{2}}{\mathrm{R}_{1}}$
3 $\frac{1}{R_{1} R_{2}}$
4 $\mathrm{R}_{1} \mathrm{R}_{2}$
Electro Magnetic Induction

154764 A current $I=10 \sin (50 \pi t)$ ampere is passed in the first coil which induces a maximum e.m.f. of $5 \pi$ volt in the second coil. The mutual inductance between the coils is

1 $5 \mathrm{mH}$
2 $1 \mathrm{mH}$
3 $0.1 \mathrm{mH}$
4 $10 \mathrm{mH}$
Electro Magnetic Induction

154765 A toroidal solenoid with air core has an average radius ' $R$ ', number of turns ' $N$ ' and area of cross-section ' $A$ '. The self-inductance of the solenoid is (Neglect the field variation across-section of the toroid)

1 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{\mathrm{R}}$
2 $\frac{\mu_{0} \mathrm{NA}}{2 \pi \mathrm{R}}$
3 $\frac{\mu_{0} \mathrm{NA}}{\mathrm{R}}$
4 $\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{2 \pi \mathrm{R}}$
Electro Magnetic Induction

154767 Two coils $P$ and $Q$ have mutual inductance ' $M$ ' $H$. If the current in the primary is $I=I_{0} \sin \omega t$, then the maximum value of e.m.f. induced in coil $Q$ is

1 $\frac{M}{I_{0} \omega}$
2 $\mathrm{I}_{0} \mathrm{M} \omega$
3 $\frac{\mathrm{I}_{0}}{\mathrm{M} \omega}$
4 $\frac{\omega}{\mathrm{I}_{0} \mathrm{M}}$