00. Magnetic Flux, Faraday's Law
Electro Magnetic Induction

154543 A rod of $10 \mathrm{~cm}$ length is moving perpendicular to uniform magnetic field of intensity $5 \times 10^{-4}$ $\mathrm{Wb} / \mathrm{m}^{2}$. If the acceleration of the $\mathrm{rod}$ is $5 \mathrm{~m} / \mathrm{s}^{2}$ then rate of increase of induced emf is

1 $2.0 \times 10^{-4} \mathrm{Vs}^{-1}$
2 $25 \times 10^{-4} \mathrm{Vs}$
3 $20 \times 10^{-4} \mathrm{Vs}$
4 $2.5 \times 10^{-4} \mathrm{Vs}^{-1}$
Electro Magnetic Induction

154544 A circuit area $0.01 \mathrm{~m}^{2}$ is kept inside a magnetic field which is normal to its plane. The magnetic field changes from $2 T$ to $1 T$ in $1 \mathrm{~ms}$ If the resistance of the circuit is $2 \Omega$. The amount of heat evolved is

1 $0.05 \mathrm{~J}$
2 $50 \mathrm{~J}$
3 $0.50 \mathrm{~J}$
4 $500 \mathrm{~J}$
Electro Magnetic Induction

154546 A conducting circular loop is placed in a uniform magnetic field of induction $B$ Tesla with its plane normal to the field. Now, the radius of the loop starts shrinking at the rate $\left(\frac{d r}{d t}\right)$. Then, the induced emf at the instant when the radius is $r$, is

1 $\pi \mathrm{rB}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)$
2 $2 \pi \mathrm{rB}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)$
3 $\pi r^{2}\left(\frac{d B}{d t}\right)$
4 $\left(\frac{\pi r^{2}}{2}\right)^{2} B\left(\frac{d r}{d t}\right)$
Electro Magnetic Induction

154548 A coil of resistance $400 \Omega$ is placed in a magnetic field. If the magnetic flux $\phi(\mathrm{Wb})$ linked with the coil varies with time $t(\mathrm{sec})$ as $\phi$ $=50 t^{2}+4$. The current in the coil at $t=2 \mathrm{sec}$ is

1 $0.5 \mathrm{~A}$
2 $0.1 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $1 \mathrm{~A}$
Electro Magnetic Induction

154543 A rod of $10 \mathrm{~cm}$ length is moving perpendicular to uniform magnetic field of intensity $5 \times 10^{-4}$ $\mathrm{Wb} / \mathrm{m}^{2}$. If the acceleration of the $\mathrm{rod}$ is $5 \mathrm{~m} / \mathrm{s}^{2}$ then rate of increase of induced emf is

1 $2.0 \times 10^{-4} \mathrm{Vs}^{-1}$
2 $25 \times 10^{-4} \mathrm{Vs}$
3 $20 \times 10^{-4} \mathrm{Vs}$
4 $2.5 \times 10^{-4} \mathrm{Vs}^{-1}$
Electro Magnetic Induction

154544 A circuit area $0.01 \mathrm{~m}^{2}$ is kept inside a magnetic field which is normal to its plane. The magnetic field changes from $2 T$ to $1 T$ in $1 \mathrm{~ms}$ If the resistance of the circuit is $2 \Omega$. The amount of heat evolved is

1 $0.05 \mathrm{~J}$
2 $50 \mathrm{~J}$
3 $0.50 \mathrm{~J}$
4 $500 \mathrm{~J}$
Electro Magnetic Induction

154546 A conducting circular loop is placed in a uniform magnetic field of induction $B$ Tesla with its plane normal to the field. Now, the radius of the loop starts shrinking at the rate $\left(\frac{d r}{d t}\right)$. Then, the induced emf at the instant when the radius is $r$, is

1 $\pi \mathrm{rB}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)$
2 $2 \pi \mathrm{rB}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)$
3 $\pi r^{2}\left(\frac{d B}{d t}\right)$
4 $\left(\frac{\pi r^{2}}{2}\right)^{2} B\left(\frac{d r}{d t}\right)$
Electro Magnetic Induction

154548 A coil of resistance $400 \Omega$ is placed in a magnetic field. If the magnetic flux $\phi(\mathrm{Wb})$ linked with the coil varies with time $t(\mathrm{sec})$ as $\phi$ $=50 t^{2}+4$. The current in the coil at $t=2 \mathrm{sec}$ is

1 $0.5 \mathrm{~A}$
2 $0.1 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $1 \mathrm{~A}$
Electro Magnetic Induction

154543 A rod of $10 \mathrm{~cm}$ length is moving perpendicular to uniform magnetic field of intensity $5 \times 10^{-4}$ $\mathrm{Wb} / \mathrm{m}^{2}$. If the acceleration of the $\mathrm{rod}$ is $5 \mathrm{~m} / \mathrm{s}^{2}$ then rate of increase of induced emf is

1 $2.0 \times 10^{-4} \mathrm{Vs}^{-1}$
2 $25 \times 10^{-4} \mathrm{Vs}$
3 $20 \times 10^{-4} \mathrm{Vs}$
4 $2.5 \times 10^{-4} \mathrm{Vs}^{-1}$
Electro Magnetic Induction

154544 A circuit area $0.01 \mathrm{~m}^{2}$ is kept inside a magnetic field which is normal to its plane. The magnetic field changes from $2 T$ to $1 T$ in $1 \mathrm{~ms}$ If the resistance of the circuit is $2 \Omega$. The amount of heat evolved is

1 $0.05 \mathrm{~J}$
2 $50 \mathrm{~J}$
3 $0.50 \mathrm{~J}$
4 $500 \mathrm{~J}$
Electro Magnetic Induction

154546 A conducting circular loop is placed in a uniform magnetic field of induction $B$ Tesla with its plane normal to the field. Now, the radius of the loop starts shrinking at the rate $\left(\frac{d r}{d t}\right)$. Then, the induced emf at the instant when the radius is $r$, is

1 $\pi \mathrm{rB}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)$
2 $2 \pi \mathrm{rB}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)$
3 $\pi r^{2}\left(\frac{d B}{d t}\right)$
4 $\left(\frac{\pi r^{2}}{2}\right)^{2} B\left(\frac{d r}{d t}\right)$
Electro Magnetic Induction

154548 A coil of resistance $400 \Omega$ is placed in a magnetic field. If the magnetic flux $\phi(\mathrm{Wb})$ linked with the coil varies with time $t(\mathrm{sec})$ as $\phi$ $=50 t^{2}+4$. The current in the coil at $t=2 \mathrm{sec}$ is

1 $0.5 \mathrm{~A}$
2 $0.1 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $1 \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Electro Magnetic Induction

154543 A rod of $10 \mathrm{~cm}$ length is moving perpendicular to uniform magnetic field of intensity $5 \times 10^{-4}$ $\mathrm{Wb} / \mathrm{m}^{2}$. If the acceleration of the $\mathrm{rod}$ is $5 \mathrm{~m} / \mathrm{s}^{2}$ then rate of increase of induced emf is

1 $2.0 \times 10^{-4} \mathrm{Vs}^{-1}$
2 $25 \times 10^{-4} \mathrm{Vs}$
3 $20 \times 10^{-4} \mathrm{Vs}$
4 $2.5 \times 10^{-4} \mathrm{Vs}^{-1}$
Electro Magnetic Induction

154544 A circuit area $0.01 \mathrm{~m}^{2}$ is kept inside a magnetic field which is normal to its plane. The magnetic field changes from $2 T$ to $1 T$ in $1 \mathrm{~ms}$ If the resistance of the circuit is $2 \Omega$. The amount of heat evolved is

1 $0.05 \mathrm{~J}$
2 $50 \mathrm{~J}$
3 $0.50 \mathrm{~J}$
4 $500 \mathrm{~J}$
Electro Magnetic Induction

154546 A conducting circular loop is placed in a uniform magnetic field of induction $B$ Tesla with its plane normal to the field. Now, the radius of the loop starts shrinking at the rate $\left(\frac{d r}{d t}\right)$. Then, the induced emf at the instant when the radius is $r$, is

1 $\pi \mathrm{rB}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)$
2 $2 \pi \mathrm{rB}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)$
3 $\pi r^{2}\left(\frac{d B}{d t}\right)$
4 $\left(\frac{\pi r^{2}}{2}\right)^{2} B\left(\frac{d r}{d t}\right)$
Electro Magnetic Induction

154548 A coil of resistance $400 \Omega$ is placed in a magnetic field. If the magnetic flux $\phi(\mathrm{Wb})$ linked with the coil varies with time $t(\mathrm{sec})$ as $\phi$ $=50 t^{2}+4$. The current in the coil at $t=2 \mathrm{sec}$ is

1 $0.5 \mathrm{~A}$
2 $0.1 \mathrm{~A}$
3 $2 \mathrm{~A}$
4 $1 \mathrm{~A}$