154321
The magnetization of bar magnet of length 5 cm, cross sectional area $2 \mathrm{~cm}^{2}$ net magnetic moment $1 \mathrm{Am}^{2}$ is
1 $2 \times 10^{5} \mathrm{~A} / \mathrm{m}$
2 $3 \times 10^{5} \mathrm{~A} / \mathrm{m}$
3 $1 \times 10^{5} \mathrm{~A} / \mathrm{m}$
4 $4 \times 10^{5} \mathrm{~A} / \mathrm{m}$
Explanation:
C Given, Length $(\mathrm{L})=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}$, Area $(\mathrm{A})=2 \mathrm{~cm}^{2}=2 \times 10^{-4} \mathrm{~m}^{2}$ Magnetic moment $(\mathrm{M})=1 \mathrm{Am}^{-2}$ The magnetisation of the bar magnet is $\mathrm{I}=\frac{\mathrm{M}}{\mathrm{V}}$ $\mathrm{I}=\frac{\mathrm{M}}{\mathrm{A} \times \mathrm{L}} \quad(\therefore \mathrm{V}=\mathrm{A} \times \mathrm{L})$ Substituting given values, we get $\mathrm{I}= \frac{1}{2 \times 10^{-4} \times 5 \times 10^{-2}}=\frac{1}{10^{-5}}$ $=1 \times 10^{5} \mathrm{Am}$
MHT-CET 2019
Magnetism and Matter
154322
A magnetizing field of $5000 \mathrm{~A} / \mathrm{m}$ produces a magnetic flux of $4 \times 10^{-5}$ weber in an iron rod of cross sectional area $0.4 \mathrm{~cm}^{2}$. The permeability of the $\mathrm{rod}$ in $\mathrm{Wb} / \mathrm{Am}$ is
154326
The magnetic susceptibility of a paramagnetic substance at $-173^{\circ} \mathrm{C}$ is $1.5 \times 10^{-2}$. To have the susceptibility $0.5 \times 10^{-2}$, the change in temperature in ${ }^{\circ} \mathrm{C}$ is
154321
The magnetization of bar magnet of length 5 cm, cross sectional area $2 \mathrm{~cm}^{2}$ net magnetic moment $1 \mathrm{Am}^{2}$ is
1 $2 \times 10^{5} \mathrm{~A} / \mathrm{m}$
2 $3 \times 10^{5} \mathrm{~A} / \mathrm{m}$
3 $1 \times 10^{5} \mathrm{~A} / \mathrm{m}$
4 $4 \times 10^{5} \mathrm{~A} / \mathrm{m}$
Explanation:
C Given, Length $(\mathrm{L})=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}$, Area $(\mathrm{A})=2 \mathrm{~cm}^{2}=2 \times 10^{-4} \mathrm{~m}^{2}$ Magnetic moment $(\mathrm{M})=1 \mathrm{Am}^{-2}$ The magnetisation of the bar magnet is $\mathrm{I}=\frac{\mathrm{M}}{\mathrm{V}}$ $\mathrm{I}=\frac{\mathrm{M}}{\mathrm{A} \times \mathrm{L}} \quad(\therefore \mathrm{V}=\mathrm{A} \times \mathrm{L})$ Substituting given values, we get $\mathrm{I}= \frac{1}{2 \times 10^{-4} \times 5 \times 10^{-2}}=\frac{1}{10^{-5}}$ $=1 \times 10^{5} \mathrm{Am}$
MHT-CET 2019
Magnetism and Matter
154322
A magnetizing field of $5000 \mathrm{~A} / \mathrm{m}$ produces a magnetic flux of $4 \times 10^{-5}$ weber in an iron rod of cross sectional area $0.4 \mathrm{~cm}^{2}$. The permeability of the $\mathrm{rod}$ in $\mathrm{Wb} / \mathrm{Am}$ is
154326
The magnetic susceptibility of a paramagnetic substance at $-173^{\circ} \mathrm{C}$ is $1.5 \times 10^{-2}$. To have the susceptibility $0.5 \times 10^{-2}$, the change in temperature in ${ }^{\circ} \mathrm{C}$ is
154321
The magnetization of bar magnet of length 5 cm, cross sectional area $2 \mathrm{~cm}^{2}$ net magnetic moment $1 \mathrm{Am}^{2}$ is
1 $2 \times 10^{5} \mathrm{~A} / \mathrm{m}$
2 $3 \times 10^{5} \mathrm{~A} / \mathrm{m}$
3 $1 \times 10^{5} \mathrm{~A} / \mathrm{m}$
4 $4 \times 10^{5} \mathrm{~A} / \mathrm{m}$
Explanation:
C Given, Length $(\mathrm{L})=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}$, Area $(\mathrm{A})=2 \mathrm{~cm}^{2}=2 \times 10^{-4} \mathrm{~m}^{2}$ Magnetic moment $(\mathrm{M})=1 \mathrm{Am}^{-2}$ The magnetisation of the bar magnet is $\mathrm{I}=\frac{\mathrm{M}}{\mathrm{V}}$ $\mathrm{I}=\frac{\mathrm{M}}{\mathrm{A} \times \mathrm{L}} \quad(\therefore \mathrm{V}=\mathrm{A} \times \mathrm{L})$ Substituting given values, we get $\mathrm{I}= \frac{1}{2 \times 10^{-4} \times 5 \times 10^{-2}}=\frac{1}{10^{-5}}$ $=1 \times 10^{5} \mathrm{Am}$
MHT-CET 2019
Magnetism and Matter
154322
A magnetizing field of $5000 \mathrm{~A} / \mathrm{m}$ produces a magnetic flux of $4 \times 10^{-5}$ weber in an iron rod of cross sectional area $0.4 \mathrm{~cm}^{2}$. The permeability of the $\mathrm{rod}$ in $\mathrm{Wb} / \mathrm{Am}$ is
154326
The magnetic susceptibility of a paramagnetic substance at $-173^{\circ} \mathrm{C}$ is $1.5 \times 10^{-2}$. To have the susceptibility $0.5 \times 10^{-2}$, the change in temperature in ${ }^{\circ} \mathrm{C}$ is
154321
The magnetization of bar magnet of length 5 cm, cross sectional area $2 \mathrm{~cm}^{2}$ net magnetic moment $1 \mathrm{Am}^{2}$ is
1 $2 \times 10^{5} \mathrm{~A} / \mathrm{m}$
2 $3 \times 10^{5} \mathrm{~A} / \mathrm{m}$
3 $1 \times 10^{5} \mathrm{~A} / \mathrm{m}$
4 $4 \times 10^{5} \mathrm{~A} / \mathrm{m}$
Explanation:
C Given, Length $(\mathrm{L})=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}$, Area $(\mathrm{A})=2 \mathrm{~cm}^{2}=2 \times 10^{-4} \mathrm{~m}^{2}$ Magnetic moment $(\mathrm{M})=1 \mathrm{Am}^{-2}$ The magnetisation of the bar magnet is $\mathrm{I}=\frac{\mathrm{M}}{\mathrm{V}}$ $\mathrm{I}=\frac{\mathrm{M}}{\mathrm{A} \times \mathrm{L}} \quad(\therefore \mathrm{V}=\mathrm{A} \times \mathrm{L})$ Substituting given values, we get $\mathrm{I}= \frac{1}{2 \times 10^{-4} \times 5 \times 10^{-2}}=\frac{1}{10^{-5}}$ $=1 \times 10^{5} \mathrm{Am}$
MHT-CET 2019
Magnetism and Matter
154322
A magnetizing field of $5000 \mathrm{~A} / \mathrm{m}$ produces a magnetic flux of $4 \times 10^{-5}$ weber in an iron rod of cross sectional area $0.4 \mathrm{~cm}^{2}$. The permeability of the $\mathrm{rod}$ in $\mathrm{Wb} / \mathrm{Am}$ is
154326
The magnetic susceptibility of a paramagnetic substance at $-173^{\circ} \mathrm{C}$ is $1.5 \times 10^{-2}$. To have the susceptibility $0.5 \times 10^{-2}$, the change in temperature in ${ }^{\circ} \mathrm{C}$ is