NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Magnetism and Matter
154212
In conversation of moving coil galvanometer into an ammeter of required range, the resistance of ammeter so formed is $S=$ shunt and $\mathbf{G}=$ resistance of galvanometer
1 $\frac{\mathrm{S}+\mathrm{G}}{\mathrm{SG}}$
2 $\frac{\mathrm{SG}}{\mathrm{S}-\mathrm{G}}$
3 $\frac{\mathrm{S}-\mathrm{G}}{\mathrm{SG}}$
4 $\frac{\mathrm{SG}}{\mathrm{S}+\mathrm{G}}$
Explanation:
D A moving coil galvanometer can be converted into an ammeter by connecting a low resistance in parallel to it. The resistance of an ammeter, $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{~S}}+\frac{1}{\mathrm{G}}$ $\mathrm{R}=\frac{\mathrm{SG}}{\mathrm{S}+\mathrm{G}}$
MHT-CET 2020
Magnetism and Matter
154213
The sensitivity of moving coil galvanometer is inversely proportional to
1 Number of turns in the coil
2 magnetic induction of horse shoe magnet
3 twist constant of phosphor bronze wire
4 current it measures
Explanation:
C The sensitivity of moving coil galvanometer is inversely proportional to twist constant of phosphor bronze wire $\mathrm{k} \theta=\mathrm{nABi}$ Sensitivity $=\frac{\theta}{\mathrm{i}}=\frac{\mathrm{nAB}}{\mathrm{k}}$
MHT-CET 2020
Magnetism and Matter
154225
Current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is
1 $250 \Omega$
2 $25 \Omega$
3 $40 \Omega$
4 $500 \Omega$
Explanation:
A Given, $\mathrm{I}_{\mathrm{S}}=5 \mathrm{div} / \mathrm{mA}, \mathrm{V}_{\mathrm{S}}=20 \mathrm{div} / \mathrm{V}$ Current Sensitivity $\left(\mathrm{I}_{\mathrm{S}}\right)=\frac{\mathrm{NBA}}{\mathrm{k}}=5 \mathrm{div} / \mathrm{mA}=5000 \mathrm{div} / \mathrm{A}$ Voltage Sensitivity $\left(V_{S}\right)=\frac{N B A}{k R}=\frac{I_{S}}{R}$ $\therefore \quad \mathrm{R}=\frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{S}}}=\frac{5000}{20}=250 \Omega$
NEET 2018
Magnetism and Matter
154228
The current sensitivity of a moving coil galvanometer depends on
1 the number of turns in the coil
2 moment of inertia of the coil
3 current sent through galvanometer
4 eddy current in $\mathrm{Al}$ frame
Explanation:
A Current Sensitivity $=\frac{\mathrm{NBA}}{\mathrm{k}}$ Where, $\mathrm{k}=$ Constant of torsional rigidity Hence, current sensitivity of moving coil galvanometer is depends on the number of turns in the coil.
154212
In conversation of moving coil galvanometer into an ammeter of required range, the resistance of ammeter so formed is $S=$ shunt and $\mathbf{G}=$ resistance of galvanometer
1 $\frac{\mathrm{S}+\mathrm{G}}{\mathrm{SG}}$
2 $\frac{\mathrm{SG}}{\mathrm{S}-\mathrm{G}}$
3 $\frac{\mathrm{S}-\mathrm{G}}{\mathrm{SG}}$
4 $\frac{\mathrm{SG}}{\mathrm{S}+\mathrm{G}}$
Explanation:
D A moving coil galvanometer can be converted into an ammeter by connecting a low resistance in parallel to it. The resistance of an ammeter, $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{~S}}+\frac{1}{\mathrm{G}}$ $\mathrm{R}=\frac{\mathrm{SG}}{\mathrm{S}+\mathrm{G}}$
MHT-CET 2020
Magnetism and Matter
154213
The sensitivity of moving coil galvanometer is inversely proportional to
1 Number of turns in the coil
2 magnetic induction of horse shoe magnet
3 twist constant of phosphor bronze wire
4 current it measures
Explanation:
C The sensitivity of moving coil galvanometer is inversely proportional to twist constant of phosphor bronze wire $\mathrm{k} \theta=\mathrm{nABi}$ Sensitivity $=\frac{\theta}{\mathrm{i}}=\frac{\mathrm{nAB}}{\mathrm{k}}$
MHT-CET 2020
Magnetism and Matter
154225
Current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is
1 $250 \Omega$
2 $25 \Omega$
3 $40 \Omega$
4 $500 \Omega$
Explanation:
A Given, $\mathrm{I}_{\mathrm{S}}=5 \mathrm{div} / \mathrm{mA}, \mathrm{V}_{\mathrm{S}}=20 \mathrm{div} / \mathrm{V}$ Current Sensitivity $\left(\mathrm{I}_{\mathrm{S}}\right)=\frac{\mathrm{NBA}}{\mathrm{k}}=5 \mathrm{div} / \mathrm{mA}=5000 \mathrm{div} / \mathrm{A}$ Voltage Sensitivity $\left(V_{S}\right)=\frac{N B A}{k R}=\frac{I_{S}}{R}$ $\therefore \quad \mathrm{R}=\frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{S}}}=\frac{5000}{20}=250 \Omega$
NEET 2018
Magnetism and Matter
154228
The current sensitivity of a moving coil galvanometer depends on
1 the number of turns in the coil
2 moment of inertia of the coil
3 current sent through galvanometer
4 eddy current in $\mathrm{Al}$ frame
Explanation:
A Current Sensitivity $=\frac{\mathrm{NBA}}{\mathrm{k}}$ Where, $\mathrm{k}=$ Constant of torsional rigidity Hence, current sensitivity of moving coil galvanometer is depends on the number of turns in the coil.
154212
In conversation of moving coil galvanometer into an ammeter of required range, the resistance of ammeter so formed is $S=$ shunt and $\mathbf{G}=$ resistance of galvanometer
1 $\frac{\mathrm{S}+\mathrm{G}}{\mathrm{SG}}$
2 $\frac{\mathrm{SG}}{\mathrm{S}-\mathrm{G}}$
3 $\frac{\mathrm{S}-\mathrm{G}}{\mathrm{SG}}$
4 $\frac{\mathrm{SG}}{\mathrm{S}+\mathrm{G}}$
Explanation:
D A moving coil galvanometer can be converted into an ammeter by connecting a low resistance in parallel to it. The resistance of an ammeter, $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{~S}}+\frac{1}{\mathrm{G}}$ $\mathrm{R}=\frac{\mathrm{SG}}{\mathrm{S}+\mathrm{G}}$
MHT-CET 2020
Magnetism and Matter
154213
The sensitivity of moving coil galvanometer is inversely proportional to
1 Number of turns in the coil
2 magnetic induction of horse shoe magnet
3 twist constant of phosphor bronze wire
4 current it measures
Explanation:
C The sensitivity of moving coil galvanometer is inversely proportional to twist constant of phosphor bronze wire $\mathrm{k} \theta=\mathrm{nABi}$ Sensitivity $=\frac{\theta}{\mathrm{i}}=\frac{\mathrm{nAB}}{\mathrm{k}}$
MHT-CET 2020
Magnetism and Matter
154225
Current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is
1 $250 \Omega$
2 $25 \Omega$
3 $40 \Omega$
4 $500 \Omega$
Explanation:
A Given, $\mathrm{I}_{\mathrm{S}}=5 \mathrm{div} / \mathrm{mA}, \mathrm{V}_{\mathrm{S}}=20 \mathrm{div} / \mathrm{V}$ Current Sensitivity $\left(\mathrm{I}_{\mathrm{S}}\right)=\frac{\mathrm{NBA}}{\mathrm{k}}=5 \mathrm{div} / \mathrm{mA}=5000 \mathrm{div} / \mathrm{A}$ Voltage Sensitivity $\left(V_{S}\right)=\frac{N B A}{k R}=\frac{I_{S}}{R}$ $\therefore \quad \mathrm{R}=\frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{S}}}=\frac{5000}{20}=250 \Omega$
NEET 2018
Magnetism and Matter
154228
The current sensitivity of a moving coil galvanometer depends on
1 the number of turns in the coil
2 moment of inertia of the coil
3 current sent through galvanometer
4 eddy current in $\mathrm{Al}$ frame
Explanation:
A Current Sensitivity $=\frac{\mathrm{NBA}}{\mathrm{k}}$ Where, $\mathrm{k}=$ Constant of torsional rigidity Hence, current sensitivity of moving coil galvanometer is depends on the number of turns in the coil.
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Magnetism and Matter
154212
In conversation of moving coil galvanometer into an ammeter of required range, the resistance of ammeter so formed is $S=$ shunt and $\mathbf{G}=$ resistance of galvanometer
1 $\frac{\mathrm{S}+\mathrm{G}}{\mathrm{SG}}$
2 $\frac{\mathrm{SG}}{\mathrm{S}-\mathrm{G}}$
3 $\frac{\mathrm{S}-\mathrm{G}}{\mathrm{SG}}$
4 $\frac{\mathrm{SG}}{\mathrm{S}+\mathrm{G}}$
Explanation:
D A moving coil galvanometer can be converted into an ammeter by connecting a low resistance in parallel to it. The resistance of an ammeter, $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{~S}}+\frac{1}{\mathrm{G}}$ $\mathrm{R}=\frac{\mathrm{SG}}{\mathrm{S}+\mathrm{G}}$
MHT-CET 2020
Magnetism and Matter
154213
The sensitivity of moving coil galvanometer is inversely proportional to
1 Number of turns in the coil
2 magnetic induction of horse shoe magnet
3 twist constant of phosphor bronze wire
4 current it measures
Explanation:
C The sensitivity of moving coil galvanometer is inversely proportional to twist constant of phosphor bronze wire $\mathrm{k} \theta=\mathrm{nABi}$ Sensitivity $=\frac{\theta}{\mathrm{i}}=\frac{\mathrm{nAB}}{\mathrm{k}}$
MHT-CET 2020
Magnetism and Matter
154225
Current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is
1 $250 \Omega$
2 $25 \Omega$
3 $40 \Omega$
4 $500 \Omega$
Explanation:
A Given, $\mathrm{I}_{\mathrm{S}}=5 \mathrm{div} / \mathrm{mA}, \mathrm{V}_{\mathrm{S}}=20 \mathrm{div} / \mathrm{V}$ Current Sensitivity $\left(\mathrm{I}_{\mathrm{S}}\right)=\frac{\mathrm{NBA}}{\mathrm{k}}=5 \mathrm{div} / \mathrm{mA}=5000 \mathrm{div} / \mathrm{A}$ Voltage Sensitivity $\left(V_{S}\right)=\frac{N B A}{k R}=\frac{I_{S}}{R}$ $\therefore \quad \mathrm{R}=\frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{S}}}=\frac{5000}{20}=250 \Omega$
NEET 2018
Magnetism and Matter
154228
The current sensitivity of a moving coil galvanometer depends on
1 the number of turns in the coil
2 moment of inertia of the coil
3 current sent through galvanometer
4 eddy current in $\mathrm{Al}$ frame
Explanation:
A Current Sensitivity $=\frac{\mathrm{NBA}}{\mathrm{k}}$ Where, $\mathrm{k}=$ Constant of torsional rigidity Hence, current sensitivity of moving coil galvanometer is depends on the number of turns in the coil.