00. Magnet and Magnetic Dipole
Magnetism and Matter

153987 A bar magnet is hanging freely in a magnetic field, If work done to rotate it from equilibrium position to $60^{\circ}$ is $W_{1}$ and then $60^{\circ}$ to $90^{\circ}$ is $W_{2}$, then ratio of $W_{1}: W_{2}$ will be

1 $1: 1$
2 $2: 1$
3 $\sqrt{3: 2}$
4 $2: \sqrt{3}$
Magnetism and Matter

153988 An electron revolving in a circular orbit of radius ' $r$ ' with velocity ' $V$ ' and frequency ' $v$ ' has orbital magnetic moment ' $M$ '. If the frequency of revolution is doubled then the new magnetic moment will be

1 $\frac{M}{2}$
2 $\frac{M}{4}$
3 $2 \mathrm{M}$
4 $\mathrm{M}$
Magnetism and Matter

153989 An electron of charge ' $\mathrm{e}$ ' is revolving in a fixed orbit of radius ' $r$ ' with frequency ' $f$ '. Its magnetic dipole moment is

1 $\pi^{2}$ efr
2 $\pi$ efr ${ }^{2}$
3 $\pi$ efr
4 $\pi^{2}$ efr ${ }^{2}$
Magnetism and Matter

153990 A cylindrical magnetic rod has length $5 \mathrm{~cm}$ and diameter $1 \mathrm{~cm}$. It has uniform magnetization $5.3 \times 10^{3} \frac{\mathrm{A}}{\mathrm{m}}$. Its net magnetic dipole moment is nearly $\left(\pi=\frac{22}{7}\right)$

1 $2.5 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
2 $10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
3 $0.5 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
4 $2 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
Magnetism and Matter

153987 A bar magnet is hanging freely in a magnetic field, If work done to rotate it from equilibrium position to $60^{\circ}$ is $W_{1}$ and then $60^{\circ}$ to $90^{\circ}$ is $W_{2}$, then ratio of $W_{1}: W_{2}$ will be

1 $1: 1$
2 $2: 1$
3 $\sqrt{3: 2}$
4 $2: \sqrt{3}$
Magnetism and Matter

153988 An electron revolving in a circular orbit of radius ' $r$ ' with velocity ' $V$ ' and frequency ' $v$ ' has orbital magnetic moment ' $M$ '. If the frequency of revolution is doubled then the new magnetic moment will be

1 $\frac{M}{2}$
2 $\frac{M}{4}$
3 $2 \mathrm{M}$
4 $\mathrm{M}$
Magnetism and Matter

153989 An electron of charge ' $\mathrm{e}$ ' is revolving in a fixed orbit of radius ' $r$ ' with frequency ' $f$ '. Its magnetic dipole moment is

1 $\pi^{2}$ efr
2 $\pi$ efr ${ }^{2}$
3 $\pi$ efr
4 $\pi^{2}$ efr ${ }^{2}$
Magnetism and Matter

153990 A cylindrical magnetic rod has length $5 \mathrm{~cm}$ and diameter $1 \mathrm{~cm}$. It has uniform magnetization $5.3 \times 10^{3} \frac{\mathrm{A}}{\mathrm{m}}$. Its net magnetic dipole moment is nearly $\left(\pi=\frac{22}{7}\right)$

1 $2.5 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
2 $10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
3 $0.5 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
4 $2 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
Magnetism and Matter

153987 A bar magnet is hanging freely in a magnetic field, If work done to rotate it from equilibrium position to $60^{\circ}$ is $W_{1}$ and then $60^{\circ}$ to $90^{\circ}$ is $W_{2}$, then ratio of $W_{1}: W_{2}$ will be

1 $1: 1$
2 $2: 1$
3 $\sqrt{3: 2}$
4 $2: \sqrt{3}$
Magnetism and Matter

153988 An electron revolving in a circular orbit of radius ' $r$ ' with velocity ' $V$ ' and frequency ' $v$ ' has orbital magnetic moment ' $M$ '. If the frequency of revolution is doubled then the new magnetic moment will be

1 $\frac{M}{2}$
2 $\frac{M}{4}$
3 $2 \mathrm{M}$
4 $\mathrm{M}$
Magnetism and Matter

153989 An electron of charge ' $\mathrm{e}$ ' is revolving in a fixed orbit of radius ' $r$ ' with frequency ' $f$ '. Its magnetic dipole moment is

1 $\pi^{2}$ efr
2 $\pi$ efr ${ }^{2}$
3 $\pi$ efr
4 $\pi^{2}$ efr ${ }^{2}$
Magnetism and Matter

153990 A cylindrical magnetic rod has length $5 \mathrm{~cm}$ and diameter $1 \mathrm{~cm}$. It has uniform magnetization $5.3 \times 10^{3} \frac{\mathrm{A}}{\mathrm{m}}$. Its net magnetic dipole moment is nearly $\left(\pi=\frac{22}{7}\right)$

1 $2.5 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
2 $10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
3 $0.5 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
4 $2 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
Magnetism and Matter

153987 A bar magnet is hanging freely in a magnetic field, If work done to rotate it from equilibrium position to $60^{\circ}$ is $W_{1}$ and then $60^{\circ}$ to $90^{\circ}$ is $W_{2}$, then ratio of $W_{1}: W_{2}$ will be

1 $1: 1$
2 $2: 1$
3 $\sqrt{3: 2}$
4 $2: \sqrt{3}$
Magnetism and Matter

153988 An electron revolving in a circular orbit of radius ' $r$ ' with velocity ' $V$ ' and frequency ' $v$ ' has orbital magnetic moment ' $M$ '. If the frequency of revolution is doubled then the new magnetic moment will be

1 $\frac{M}{2}$
2 $\frac{M}{4}$
3 $2 \mathrm{M}$
4 $\mathrm{M}$
Magnetism and Matter

153989 An electron of charge ' $\mathrm{e}$ ' is revolving in a fixed orbit of radius ' $r$ ' with frequency ' $f$ '. Its magnetic dipole moment is

1 $\pi^{2}$ efr
2 $\pi$ efr ${ }^{2}$
3 $\pi$ efr
4 $\pi^{2}$ efr ${ }^{2}$
Magnetism and Matter

153990 A cylindrical magnetic rod has length $5 \mathrm{~cm}$ and diameter $1 \mathrm{~cm}$. It has uniform magnetization $5.3 \times 10^{3} \frac{\mathrm{A}}{\mathrm{m}}$. Its net magnetic dipole moment is nearly $\left(\pi=\frac{22}{7}\right)$

1 $2.5 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
2 $10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
3 $0.5 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$
4 $2 \times 10^{-2} \frac{\mathrm{J}}{\mathrm{T}}$