06. Magnetic Dipole and Magnetic Moment Due to Current
Moving Charges & Magnetism

153956 The magnetised wire moment $M$ and length $l$ is bent in the form of semicircle of radius $r$. Then, its magnetic moment is

1 $\frac{2 \mathrm{M}}{\pi}$
2 $2 \mathrm{M}$
3 $\frac{M}{\pi}$
4 zero
Moving Charges & Magnetism

153957 A bar magnet of moment of inertia $49 \times 10^{-2}$ $\mathrm{kg}-\mathrm{m}^{2}$ vibrates in a magnetic field of induction $0.5 \times 10^{-4} \mathrm{~T}$. The time period of vibration is 8.8 s. The magnetic moment of the bar magnet is

1 $350 \mathrm{~A}-\mathrm{m}^{2}$
2 $490 \mathrm{~A}-\mathrm{m}^{2}$
3 $3300 \mathrm{~A}-\mathrm{m}^{2}$
4 $5000 \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153961 A bar magnet of magnetic moment $20 \mathrm{~J} / \mathrm{T}$ lies aligned with the direction of a uniform magnetic field of 0.25T. The amount of work required to turn the magnet so as to align its magnetic moment normal to the field direction is

1 $0.10 \mathrm{~J}$
2 $0.5 \mathrm{~J}$
3 $0.3 \mathrm{~J}$
4 $5.0 \mathrm{~J}$
Moving Charges & Magnetism

153963 The magnetic field at the centre of as circular loop of area $A$ is $B$. The magnetic moment of the loop will be

1 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi}$
2 $\frac{2 \mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
3 $\frac{\mathrm{BA}^{2}}{\mu_{0} \pi}$
4 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
Moving Charges & Magnetism

153964 A particle of mass $M$ and charge $q$ is moving in a circle of radius $R$ with speed $v_{1}{ }^{\prime}$ where $v\lt\lt$ speed of light. The ratio of magnetic moment of the particle to its angular momentum is

1 $\frac{\mathrm{q}}{2 \mathrm{M}}$
2 $\frac{M}{2 q}$
3 $\frac{\mathrm{q}}{\mathrm{M}}$
4 $\frac{\mathrm{q}}{4 \mathrm{M}}$
Moving Charges & Magnetism

153956 The magnetised wire moment $M$ and length $l$ is bent in the form of semicircle of radius $r$. Then, its magnetic moment is

1 $\frac{2 \mathrm{M}}{\pi}$
2 $2 \mathrm{M}$
3 $\frac{M}{\pi}$
4 zero
Moving Charges & Magnetism

153957 A bar magnet of moment of inertia $49 \times 10^{-2}$ $\mathrm{kg}-\mathrm{m}^{2}$ vibrates in a magnetic field of induction $0.5 \times 10^{-4} \mathrm{~T}$. The time period of vibration is 8.8 s. The magnetic moment of the bar magnet is

1 $350 \mathrm{~A}-\mathrm{m}^{2}$
2 $490 \mathrm{~A}-\mathrm{m}^{2}$
3 $3300 \mathrm{~A}-\mathrm{m}^{2}$
4 $5000 \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153961 A bar magnet of magnetic moment $20 \mathrm{~J} / \mathrm{T}$ lies aligned with the direction of a uniform magnetic field of 0.25T. The amount of work required to turn the magnet so as to align its magnetic moment normal to the field direction is

1 $0.10 \mathrm{~J}$
2 $0.5 \mathrm{~J}$
3 $0.3 \mathrm{~J}$
4 $5.0 \mathrm{~J}$
Moving Charges & Magnetism

153963 The magnetic field at the centre of as circular loop of area $A$ is $B$. The magnetic moment of the loop will be

1 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi}$
2 $\frac{2 \mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
3 $\frac{\mathrm{BA}^{2}}{\mu_{0} \pi}$
4 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
Moving Charges & Magnetism

153964 A particle of mass $M$ and charge $q$ is moving in a circle of radius $R$ with speed $v_{1}{ }^{\prime}$ where $v\lt\lt$ speed of light. The ratio of magnetic moment of the particle to its angular momentum is

1 $\frac{\mathrm{q}}{2 \mathrm{M}}$
2 $\frac{M}{2 q}$
3 $\frac{\mathrm{q}}{\mathrm{M}}$
4 $\frac{\mathrm{q}}{4 \mathrm{M}}$
Moving Charges & Magnetism

153956 The magnetised wire moment $M$ and length $l$ is bent in the form of semicircle of radius $r$. Then, its magnetic moment is

1 $\frac{2 \mathrm{M}}{\pi}$
2 $2 \mathrm{M}$
3 $\frac{M}{\pi}$
4 zero
Moving Charges & Magnetism

153957 A bar magnet of moment of inertia $49 \times 10^{-2}$ $\mathrm{kg}-\mathrm{m}^{2}$ vibrates in a magnetic field of induction $0.5 \times 10^{-4} \mathrm{~T}$. The time period of vibration is 8.8 s. The magnetic moment of the bar magnet is

1 $350 \mathrm{~A}-\mathrm{m}^{2}$
2 $490 \mathrm{~A}-\mathrm{m}^{2}$
3 $3300 \mathrm{~A}-\mathrm{m}^{2}$
4 $5000 \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153961 A bar magnet of magnetic moment $20 \mathrm{~J} / \mathrm{T}$ lies aligned with the direction of a uniform magnetic field of 0.25T. The amount of work required to turn the magnet so as to align its magnetic moment normal to the field direction is

1 $0.10 \mathrm{~J}$
2 $0.5 \mathrm{~J}$
3 $0.3 \mathrm{~J}$
4 $5.0 \mathrm{~J}$
Moving Charges & Magnetism

153963 The magnetic field at the centre of as circular loop of area $A$ is $B$. The magnetic moment of the loop will be

1 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi}$
2 $\frac{2 \mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
3 $\frac{\mathrm{BA}^{2}}{\mu_{0} \pi}$
4 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
Moving Charges & Magnetism

153964 A particle of mass $M$ and charge $q$ is moving in a circle of radius $R$ with speed $v_{1}{ }^{\prime}$ where $v\lt\lt$ speed of light. The ratio of magnetic moment of the particle to its angular momentum is

1 $\frac{\mathrm{q}}{2 \mathrm{M}}$
2 $\frac{M}{2 q}$
3 $\frac{\mathrm{q}}{\mathrm{M}}$
4 $\frac{\mathrm{q}}{4 \mathrm{M}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153956 The magnetised wire moment $M$ and length $l$ is bent in the form of semicircle of radius $r$. Then, its magnetic moment is

1 $\frac{2 \mathrm{M}}{\pi}$
2 $2 \mathrm{M}$
3 $\frac{M}{\pi}$
4 zero
Moving Charges & Magnetism

153957 A bar magnet of moment of inertia $49 \times 10^{-2}$ $\mathrm{kg}-\mathrm{m}^{2}$ vibrates in a magnetic field of induction $0.5 \times 10^{-4} \mathrm{~T}$. The time period of vibration is 8.8 s. The magnetic moment of the bar magnet is

1 $350 \mathrm{~A}-\mathrm{m}^{2}$
2 $490 \mathrm{~A}-\mathrm{m}^{2}$
3 $3300 \mathrm{~A}-\mathrm{m}^{2}$
4 $5000 \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153961 A bar magnet of magnetic moment $20 \mathrm{~J} / \mathrm{T}$ lies aligned with the direction of a uniform magnetic field of 0.25T. The amount of work required to turn the magnet so as to align its magnetic moment normal to the field direction is

1 $0.10 \mathrm{~J}$
2 $0.5 \mathrm{~J}$
3 $0.3 \mathrm{~J}$
4 $5.0 \mathrm{~J}$
Moving Charges & Magnetism

153963 The magnetic field at the centre of as circular loop of area $A$ is $B$. The magnetic moment of the loop will be

1 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi}$
2 $\frac{2 \mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
3 $\frac{\mathrm{BA}^{2}}{\mu_{0} \pi}$
4 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
Moving Charges & Magnetism

153964 A particle of mass $M$ and charge $q$ is moving in a circle of radius $R$ with speed $v_{1}{ }^{\prime}$ where $v\lt\lt$ speed of light. The ratio of magnetic moment of the particle to its angular momentum is

1 $\frac{\mathrm{q}}{2 \mathrm{M}}$
2 $\frac{M}{2 q}$
3 $\frac{\mathrm{q}}{\mathrm{M}}$
4 $\frac{\mathrm{q}}{4 \mathrm{M}}$
Moving Charges & Magnetism

153956 The magnetised wire moment $M$ and length $l$ is bent in the form of semicircle of radius $r$. Then, its magnetic moment is

1 $\frac{2 \mathrm{M}}{\pi}$
2 $2 \mathrm{M}$
3 $\frac{M}{\pi}$
4 zero
Moving Charges & Magnetism

153957 A bar magnet of moment of inertia $49 \times 10^{-2}$ $\mathrm{kg}-\mathrm{m}^{2}$ vibrates in a magnetic field of induction $0.5 \times 10^{-4} \mathrm{~T}$. The time period of vibration is 8.8 s. The magnetic moment of the bar magnet is

1 $350 \mathrm{~A}-\mathrm{m}^{2}$
2 $490 \mathrm{~A}-\mathrm{m}^{2}$
3 $3300 \mathrm{~A}-\mathrm{m}^{2}$
4 $5000 \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153961 A bar magnet of magnetic moment $20 \mathrm{~J} / \mathrm{T}$ lies aligned with the direction of a uniform magnetic field of 0.25T. The amount of work required to turn the magnet so as to align its magnetic moment normal to the field direction is

1 $0.10 \mathrm{~J}$
2 $0.5 \mathrm{~J}$
3 $0.3 \mathrm{~J}$
4 $5.0 \mathrm{~J}$
Moving Charges & Magnetism

153963 The magnetic field at the centre of as circular loop of area $A$ is $B$. The magnetic moment of the loop will be

1 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi}$
2 $\frac{2 \mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
3 $\frac{\mathrm{BA}^{2}}{\mu_{0} \pi}$
4 $\frac{\mathrm{BA}^{3 / 2}}{\mu_{0} \pi^{1 / 2}}$
Moving Charges & Magnetism

153964 A particle of mass $M$ and charge $q$ is moving in a circle of radius $R$ with speed $v_{1}{ }^{\prime}$ where $v\lt\lt$ speed of light. The ratio of magnetic moment of the particle to its angular momentum is

1 $\frac{\mathrm{q}}{2 \mathrm{M}}$
2 $\frac{M}{2 q}$
3 $\frac{\mathrm{q}}{\mathrm{M}}$
4 $\frac{\mathrm{q}}{4 \mathrm{M}}$