06. Magnetic Dipole and Magnetic Moment Due to Current
Moving Charges & Magnetism

153974 A circular loop has a radius of $5 \mathrm{~cm}$ and it is carrying a current of $0.1 \mathrm{~A}$. Its magnetic moment is

1 $1.32 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
2 $2.62 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
3 $5.25 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
4 $7.85 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153897 A magnet of magnetic moment $6 \mathrm{JT}^{-1}$ is aligned in the direction of magnetic field of $0.3 \mathrm{~T}$. The net work done to bring the magnet normal to the magnetic field is

1 $2 \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $1.8 \mathrm{~J}$
4 $2.4 \mathrm{~J}$
Moving Charges & Magnetism

153903 Magnetic potential at any point on equatorial line of the magnetic dipole is

1 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{2}}$
2 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{3}}$
3 $\frac{\mu_{0} \mathrm{M} \cdot \cos \theta}{4 \pi \mathrm{d}^{2}}$
4 0
Moving Charges & Magnetism

153905 The magnetic moment of current (I) carrying circular coil of radius ( $r$ ) and number of turns (n) varies as:

1 $1 / \mathrm{r}^{2}$
2 $1 / \mathrm{r}$
3 $r$
4 $\mathrm{r}^{2}$
Moving Charges & Magnetism

153908 The electron in the hydrogen atom is moving with a speed of $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in an orbit of radius $0.5 \AA$. The magnetic moment of the revolving electron is

1 $8 \times 10^{-24} \mathrm{Am}^{2}$
2 $15 \times 10^{-24} \mathrm{Am}^{2}$
3 $11 \times 10^{-24} \mathrm{Am}^{2}$
4 $6 \times 10^{-24} \mathrm{Am}^{2}$
Moving Charges & Magnetism

153974 A circular loop has a radius of $5 \mathrm{~cm}$ and it is carrying a current of $0.1 \mathrm{~A}$. Its magnetic moment is

1 $1.32 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
2 $2.62 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
3 $5.25 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
4 $7.85 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153897 A magnet of magnetic moment $6 \mathrm{JT}^{-1}$ is aligned in the direction of magnetic field of $0.3 \mathrm{~T}$. The net work done to bring the magnet normal to the magnetic field is

1 $2 \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $1.8 \mathrm{~J}$
4 $2.4 \mathrm{~J}$
Moving Charges & Magnetism

153903 Magnetic potential at any point on equatorial line of the magnetic dipole is

1 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{2}}$
2 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{3}}$
3 $\frac{\mu_{0} \mathrm{M} \cdot \cos \theta}{4 \pi \mathrm{d}^{2}}$
4 0
Moving Charges & Magnetism

153905 The magnetic moment of current (I) carrying circular coil of radius ( $r$ ) and number of turns (n) varies as:

1 $1 / \mathrm{r}^{2}$
2 $1 / \mathrm{r}$
3 $r$
4 $\mathrm{r}^{2}$
Moving Charges & Magnetism

153908 The electron in the hydrogen atom is moving with a speed of $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in an orbit of radius $0.5 \AA$. The magnetic moment of the revolving electron is

1 $8 \times 10^{-24} \mathrm{Am}^{2}$
2 $15 \times 10^{-24} \mathrm{Am}^{2}$
3 $11 \times 10^{-24} \mathrm{Am}^{2}$
4 $6 \times 10^{-24} \mathrm{Am}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153974 A circular loop has a radius of $5 \mathrm{~cm}$ and it is carrying a current of $0.1 \mathrm{~A}$. Its magnetic moment is

1 $1.32 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
2 $2.62 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
3 $5.25 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
4 $7.85 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153897 A magnet of magnetic moment $6 \mathrm{JT}^{-1}$ is aligned in the direction of magnetic field of $0.3 \mathrm{~T}$. The net work done to bring the magnet normal to the magnetic field is

1 $2 \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $1.8 \mathrm{~J}$
4 $2.4 \mathrm{~J}$
Moving Charges & Magnetism

153903 Magnetic potential at any point on equatorial line of the magnetic dipole is

1 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{2}}$
2 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{3}}$
3 $\frac{\mu_{0} \mathrm{M} \cdot \cos \theta}{4 \pi \mathrm{d}^{2}}$
4 0
Moving Charges & Magnetism

153905 The magnetic moment of current (I) carrying circular coil of radius ( $r$ ) and number of turns (n) varies as:

1 $1 / \mathrm{r}^{2}$
2 $1 / \mathrm{r}$
3 $r$
4 $\mathrm{r}^{2}$
Moving Charges & Magnetism

153908 The electron in the hydrogen atom is moving with a speed of $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in an orbit of radius $0.5 \AA$. The magnetic moment of the revolving electron is

1 $8 \times 10^{-24} \mathrm{Am}^{2}$
2 $15 \times 10^{-24} \mathrm{Am}^{2}$
3 $11 \times 10^{-24} \mathrm{Am}^{2}$
4 $6 \times 10^{-24} \mathrm{Am}^{2}$
Moving Charges & Magnetism

153974 A circular loop has a radius of $5 \mathrm{~cm}$ and it is carrying a current of $0.1 \mathrm{~A}$. Its magnetic moment is

1 $1.32 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
2 $2.62 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
3 $5.25 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
4 $7.85 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153897 A magnet of magnetic moment $6 \mathrm{JT}^{-1}$ is aligned in the direction of magnetic field of $0.3 \mathrm{~T}$. The net work done to bring the magnet normal to the magnetic field is

1 $2 \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $1.8 \mathrm{~J}$
4 $2.4 \mathrm{~J}$
Moving Charges & Magnetism

153903 Magnetic potential at any point on equatorial line of the magnetic dipole is

1 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{2}}$
2 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{3}}$
3 $\frac{\mu_{0} \mathrm{M} \cdot \cos \theta}{4 \pi \mathrm{d}^{2}}$
4 0
Moving Charges & Magnetism

153905 The magnetic moment of current (I) carrying circular coil of radius ( $r$ ) and number of turns (n) varies as:

1 $1 / \mathrm{r}^{2}$
2 $1 / \mathrm{r}$
3 $r$
4 $\mathrm{r}^{2}$
Moving Charges & Magnetism

153908 The electron in the hydrogen atom is moving with a speed of $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in an orbit of radius $0.5 \AA$. The magnetic moment of the revolving electron is

1 $8 \times 10^{-24} \mathrm{Am}^{2}$
2 $15 \times 10^{-24} \mathrm{Am}^{2}$
3 $11 \times 10^{-24} \mathrm{Am}^{2}$
4 $6 \times 10^{-24} \mathrm{Am}^{2}$
Moving Charges & Magnetism

153974 A circular loop has a radius of $5 \mathrm{~cm}$ and it is carrying a current of $0.1 \mathrm{~A}$. Its magnetic moment is

1 $1.32 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
2 $2.62 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
3 $5.25 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
4 $7.85 \times 10^{-4} \mathrm{~A}-\mathrm{m}^{2}$
Moving Charges & Magnetism

153897 A magnet of magnetic moment $6 \mathrm{JT}^{-1}$ is aligned in the direction of magnetic field of $0.3 \mathrm{~T}$. The net work done to bring the magnet normal to the magnetic field is

1 $2 \mathrm{~J}$
2 $1 \mathrm{~J}$
3 $1.8 \mathrm{~J}$
4 $2.4 \mathrm{~J}$
Moving Charges & Magnetism

153903 Magnetic potential at any point on equatorial line of the magnetic dipole is

1 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{2}}$
2 $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{d}^{3}}$
3 $\frac{\mu_{0} \mathrm{M} \cdot \cos \theta}{4 \pi \mathrm{d}^{2}}$
4 0
Moving Charges & Magnetism

153905 The magnetic moment of current (I) carrying circular coil of radius ( $r$ ) and number of turns (n) varies as:

1 $1 / \mathrm{r}^{2}$
2 $1 / \mathrm{r}$
3 $r$
4 $\mathrm{r}^{2}$
Moving Charges & Magnetism

153908 The electron in the hydrogen atom is moving with a speed of $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in an orbit of radius $0.5 \AA$. The magnetic moment of the revolving electron is

1 $8 \times 10^{-24} \mathrm{Am}^{2}$
2 $15 \times 10^{-24} \mathrm{Am}^{2}$
3 $11 \times 10^{-24} \mathrm{Am}^{2}$
4 $6 \times 10^{-24} \mathrm{Am}^{2}$