05. Cyclotron
Moving Charges & Magnetism

153867 A long magnetic needle of length $2 L$ magnetic moment $M$ and pole strength $m$ is broken into two pieces at the middle. The magnetic moment and pole strength of each piece will be

1 $\frac{\mathrm{M}}{2}, \frac{\mathrm{m}}{2}$
2 $\mathrm{M}, \frac{\mathrm{m}}{2}$
3 $\frac{\mathrm{M}}{2}, \mathrm{~m}$
4 $\mathrm{M}, \mathrm{m}$
Moving Charges & Magnetism

153869 An alternating electric field of frequency ' $v$ ' is applied across the dees (radius $R$ ) of a cyclotron to accelerate protons (mass $m$ ). The operating magnetic field ' $B$ ' used and K.E. of the proton beam produced by it are respectively ( $\mathrm{e}=$ charge on proton)

1 $\frac{2 \pi \mathrm{m} v}{\mathrm{e}}, 2 \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
2 $\frac{2 \pi^{2} \mathrm{~m} v}{\mathrm{e}^{2}}, 4 \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
3 $\frac{\pi \mathrm{m} v}{\mathrm{e}}, \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
4 $\frac{2 \pi^{2} \mathrm{~m}^{2} v^{2}}{\mathrm{e}}, 2 \pi^{2} \mathrm{~m}^{2} v^{2} \mathrm{R}^{2}$
Moving Charges & Magnetism

153870 If the cyclotron oscillator frequency is $16 \mathrm{MHz}$, then what should be the operating magnetic field for accelerating the mass of proton $1.67 \times 10^{-27} \mathrm{~kg}$ ?

1 $0.334 \pi \mathrm{T}$
2 $3.34 \pi \mathrm{T}$
3 $33.4 \pi \mathrm{T}$
4 $334 \pi \mathrm{T}$
5 $3340 \pi \mathrm{T}$
Moving Charges & Magnetism

153872 If an electron moving with the kinetic energy of $6 \times 10^{-16} \mathrm{~J}$ enters perpendicularly into the magnetic field of intensity $6 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$, then the radius of the path described by it will be

1 $3.42 \mathrm{~cm}$
2 $4.23 \mathrm{~cm}$
3 $5.17 \mathrm{~cm}$
4 $7.7 \mathrm{~cm}$
Moving Charges & Magnetism

153867 A long magnetic needle of length $2 L$ magnetic moment $M$ and pole strength $m$ is broken into two pieces at the middle. The magnetic moment and pole strength of each piece will be

1 $\frac{\mathrm{M}}{2}, \frac{\mathrm{m}}{2}$
2 $\mathrm{M}, \frac{\mathrm{m}}{2}$
3 $\frac{\mathrm{M}}{2}, \mathrm{~m}$
4 $\mathrm{M}, \mathrm{m}$
Moving Charges & Magnetism

153869 An alternating electric field of frequency ' $v$ ' is applied across the dees (radius $R$ ) of a cyclotron to accelerate protons (mass $m$ ). The operating magnetic field ' $B$ ' used and K.E. of the proton beam produced by it are respectively ( $\mathrm{e}=$ charge on proton)

1 $\frac{2 \pi \mathrm{m} v}{\mathrm{e}}, 2 \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
2 $\frac{2 \pi^{2} \mathrm{~m} v}{\mathrm{e}^{2}}, 4 \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
3 $\frac{\pi \mathrm{m} v}{\mathrm{e}}, \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
4 $\frac{2 \pi^{2} \mathrm{~m}^{2} v^{2}}{\mathrm{e}}, 2 \pi^{2} \mathrm{~m}^{2} v^{2} \mathrm{R}^{2}$
Moving Charges & Magnetism

153870 If the cyclotron oscillator frequency is $16 \mathrm{MHz}$, then what should be the operating magnetic field for accelerating the mass of proton $1.67 \times 10^{-27} \mathrm{~kg}$ ?

1 $0.334 \pi \mathrm{T}$
2 $3.34 \pi \mathrm{T}$
3 $33.4 \pi \mathrm{T}$
4 $334 \pi \mathrm{T}$
5 $3340 \pi \mathrm{T}$
Moving Charges & Magnetism

153872 If an electron moving with the kinetic energy of $6 \times 10^{-16} \mathrm{~J}$ enters perpendicularly into the magnetic field of intensity $6 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$, then the radius of the path described by it will be

1 $3.42 \mathrm{~cm}$
2 $4.23 \mathrm{~cm}$
3 $5.17 \mathrm{~cm}$
4 $7.7 \mathrm{~cm}$
Moving Charges & Magnetism

153867 A long magnetic needle of length $2 L$ magnetic moment $M$ and pole strength $m$ is broken into two pieces at the middle. The magnetic moment and pole strength of each piece will be

1 $\frac{\mathrm{M}}{2}, \frac{\mathrm{m}}{2}$
2 $\mathrm{M}, \frac{\mathrm{m}}{2}$
3 $\frac{\mathrm{M}}{2}, \mathrm{~m}$
4 $\mathrm{M}, \mathrm{m}$
Moving Charges & Magnetism

153869 An alternating electric field of frequency ' $v$ ' is applied across the dees (radius $R$ ) of a cyclotron to accelerate protons (mass $m$ ). The operating magnetic field ' $B$ ' used and K.E. of the proton beam produced by it are respectively ( $\mathrm{e}=$ charge on proton)

1 $\frac{2 \pi \mathrm{m} v}{\mathrm{e}}, 2 \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
2 $\frac{2 \pi^{2} \mathrm{~m} v}{\mathrm{e}^{2}}, 4 \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
3 $\frac{\pi \mathrm{m} v}{\mathrm{e}}, \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
4 $\frac{2 \pi^{2} \mathrm{~m}^{2} v^{2}}{\mathrm{e}}, 2 \pi^{2} \mathrm{~m}^{2} v^{2} \mathrm{R}^{2}$
Moving Charges & Magnetism

153870 If the cyclotron oscillator frequency is $16 \mathrm{MHz}$, then what should be the operating magnetic field for accelerating the mass of proton $1.67 \times 10^{-27} \mathrm{~kg}$ ?

1 $0.334 \pi \mathrm{T}$
2 $3.34 \pi \mathrm{T}$
3 $33.4 \pi \mathrm{T}$
4 $334 \pi \mathrm{T}$
5 $3340 \pi \mathrm{T}$
Moving Charges & Magnetism

153872 If an electron moving with the kinetic energy of $6 \times 10^{-16} \mathrm{~J}$ enters perpendicularly into the magnetic field of intensity $6 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$, then the radius of the path described by it will be

1 $3.42 \mathrm{~cm}$
2 $4.23 \mathrm{~cm}$
3 $5.17 \mathrm{~cm}$
4 $7.7 \mathrm{~cm}$
Moving Charges & Magnetism

153867 A long magnetic needle of length $2 L$ magnetic moment $M$ and pole strength $m$ is broken into two pieces at the middle. The magnetic moment and pole strength of each piece will be

1 $\frac{\mathrm{M}}{2}, \frac{\mathrm{m}}{2}$
2 $\mathrm{M}, \frac{\mathrm{m}}{2}$
3 $\frac{\mathrm{M}}{2}, \mathrm{~m}$
4 $\mathrm{M}, \mathrm{m}$
Moving Charges & Magnetism

153869 An alternating electric field of frequency ' $v$ ' is applied across the dees (radius $R$ ) of a cyclotron to accelerate protons (mass $m$ ). The operating magnetic field ' $B$ ' used and K.E. of the proton beam produced by it are respectively ( $\mathrm{e}=$ charge on proton)

1 $\frac{2 \pi \mathrm{m} v}{\mathrm{e}}, 2 \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
2 $\frac{2 \pi^{2} \mathrm{~m} v}{\mathrm{e}^{2}}, 4 \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
3 $\frac{\pi \mathrm{m} v}{\mathrm{e}}, \pi^{2} \mathrm{~m} v^{2} \mathrm{R}^{2}$
4 $\frac{2 \pi^{2} \mathrm{~m}^{2} v^{2}}{\mathrm{e}}, 2 \pi^{2} \mathrm{~m}^{2} v^{2} \mathrm{R}^{2}$
Moving Charges & Magnetism

153870 If the cyclotron oscillator frequency is $16 \mathrm{MHz}$, then what should be the operating magnetic field for accelerating the mass of proton $1.67 \times 10^{-27} \mathrm{~kg}$ ?

1 $0.334 \pi \mathrm{T}$
2 $3.34 \pi \mathrm{T}$
3 $33.4 \pi \mathrm{T}$
4 $334 \pi \mathrm{T}$
5 $3340 \pi \mathrm{T}$
Moving Charges & Magnetism

153872 If an electron moving with the kinetic energy of $6 \times 10^{-16} \mathrm{~J}$ enters perpendicularly into the magnetic field of intensity $6 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$, then the radius of the path described by it will be

1 $3.42 \mathrm{~cm}$
2 $4.23 \mathrm{~cm}$
3 $5.17 \mathrm{~cm}$
4 $7.7 \mathrm{~cm}$