04. Force and Torque on Current Carrying Conductor
Moving Charges & Magnetism

153788 A long horizontal wire, rigidly supported, carries a current of $65 \mathrm{~A}$. A fine wire carrying a current of $10 \mathrm{~A}$ and weighing $0.048 \mathrm{Nm}^{-1}$ is placed parallel and directly above the first wire. The necessary distance between the two wires to support the second wire by only magnetic repulsion will be: $\left(\mu_{0}=4 \pi \times 10^{-7}\right.$ S.I unit)

1 $2.708 \times 10^{-3} \mathrm{~m}$
2 $4.83 \times 10^{-3} \mathrm{~m}$
3 $1.52 \times 10^{-3} \mathrm{~m}$
4 $3.05 \times 10^{-3} \mathrm{~m}$
Moving Charges & Magnetism

153789 A wire of arbitrary shape carries a current $I=$ 2 A. Consider the portion of wire between $(0,0,0)$ and $(4,4,4)$. A magnetic filled given by $B=\left(1.2 \times 10^{-4} \hat{\mathbf{i}}+2 \times 10^{-4} \hat{\mathbf{j}}\right)$ exists in the region. The force acting on the given portion of the wire is-

1 $F=[(\hat{i}+\hat{j}+\hat{k}) \times(12 \hat{i}+12 \hat{j})] N$
2 $F=8 \times 10^{-4}[(\hat{i}+\hat{j}+\hat{k}) \times(1.2 \hat{i}+2 \hat{j})] \mathrm{N}$
3 Zero
4 None of the above
Moving Charges & Magnetism

153790 A proton moves with a speed of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ along the $x$ - axis. It enters a region where there is a magnetic field of magnitude 2.0 Tesla directed at an angle of $30^{\circ}$ to the \(x\)-axis and lying in the \(x y\)-plane. The magnitude
of the magnetic force on the proton is

1 $0.8 \times 10^{-13} \mathrm{~N}$
2 $1.6 \times 10^{-13} \mathrm{~N}$
3 $8.0 \times 10^{-13} \mathrm{~N}$
4 $8.01 \times 10^{-13} \mathrm{~N}$
5 $16 \times 10^{-13} \mathrm{~N}$
Moving Charges & Magnetism

153791 A loop $\mathrm{PQR}$ carries a current of $2 \mathrm{~A}$ as shown. A uniform magnetic field $(B=2 T)$ is parallel to plane of the loop. The magnetic torque on the loop is

1 $16 \mathrm{Nm}$
2 $8 \mathrm{Nm}$
3 Zero
4 $4 \mathrm{Nm}$
Moving Charges & Magnetism

153788 A long horizontal wire, rigidly supported, carries a current of $65 \mathrm{~A}$. A fine wire carrying a current of $10 \mathrm{~A}$ and weighing $0.048 \mathrm{Nm}^{-1}$ is placed parallel and directly above the first wire. The necessary distance between the two wires to support the second wire by only magnetic repulsion will be: $\left(\mu_{0}=4 \pi \times 10^{-7}\right.$ S.I unit)

1 $2.708 \times 10^{-3} \mathrm{~m}$
2 $4.83 \times 10^{-3} \mathrm{~m}$
3 $1.52 \times 10^{-3} \mathrm{~m}$
4 $3.05 \times 10^{-3} \mathrm{~m}$
Moving Charges & Magnetism

153789 A wire of arbitrary shape carries a current $I=$ 2 A. Consider the portion of wire between $(0,0,0)$ and $(4,4,4)$. A magnetic filled given by $B=\left(1.2 \times 10^{-4} \hat{\mathbf{i}}+2 \times 10^{-4} \hat{\mathbf{j}}\right)$ exists in the region. The force acting on the given portion of the wire is-

1 $F=[(\hat{i}+\hat{j}+\hat{k}) \times(12 \hat{i}+12 \hat{j})] N$
2 $F=8 \times 10^{-4}[(\hat{i}+\hat{j}+\hat{k}) \times(1.2 \hat{i}+2 \hat{j})] \mathrm{N}$
3 Zero
4 None of the above
Moving Charges & Magnetism

153790 A proton moves with a speed of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ along the $x$ - axis. It enters a region where there is a magnetic field of magnitude 2.0 Tesla directed at an angle of $30^{\circ}$ to the \(x\)-axis and lying in the \(x y\)-plane. The magnitude
of the magnetic force on the proton is

1 $0.8 \times 10^{-13} \mathrm{~N}$
2 $1.6 \times 10^{-13} \mathrm{~N}$
3 $8.0 \times 10^{-13} \mathrm{~N}$
4 $8.01 \times 10^{-13} \mathrm{~N}$
5 $16 \times 10^{-13} \mathrm{~N}$
Moving Charges & Magnetism

153791 A loop $\mathrm{PQR}$ carries a current of $2 \mathrm{~A}$ as shown. A uniform magnetic field $(B=2 T)$ is parallel to plane of the loop. The magnetic torque on the loop is

1 $16 \mathrm{Nm}$
2 $8 \mathrm{Nm}$
3 Zero
4 $4 \mathrm{Nm}$
Moving Charges & Magnetism

153788 A long horizontal wire, rigidly supported, carries a current of $65 \mathrm{~A}$. A fine wire carrying a current of $10 \mathrm{~A}$ and weighing $0.048 \mathrm{Nm}^{-1}$ is placed parallel and directly above the first wire. The necessary distance between the two wires to support the second wire by only magnetic repulsion will be: $\left(\mu_{0}=4 \pi \times 10^{-7}\right.$ S.I unit)

1 $2.708 \times 10^{-3} \mathrm{~m}$
2 $4.83 \times 10^{-3} \mathrm{~m}$
3 $1.52 \times 10^{-3} \mathrm{~m}$
4 $3.05 \times 10^{-3} \mathrm{~m}$
Moving Charges & Magnetism

153789 A wire of arbitrary shape carries a current $I=$ 2 A. Consider the portion of wire between $(0,0,0)$ and $(4,4,4)$. A magnetic filled given by $B=\left(1.2 \times 10^{-4} \hat{\mathbf{i}}+2 \times 10^{-4} \hat{\mathbf{j}}\right)$ exists in the region. The force acting on the given portion of the wire is-

1 $F=[(\hat{i}+\hat{j}+\hat{k}) \times(12 \hat{i}+12 \hat{j})] N$
2 $F=8 \times 10^{-4}[(\hat{i}+\hat{j}+\hat{k}) \times(1.2 \hat{i}+2 \hat{j})] \mathrm{N}$
3 Zero
4 None of the above
Moving Charges & Magnetism

153790 A proton moves with a speed of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ along the $x$ - axis. It enters a region where there is a magnetic field of magnitude 2.0 Tesla directed at an angle of $30^{\circ}$ to the \(x\)-axis and lying in the \(x y\)-plane. The magnitude
of the magnetic force on the proton is

1 $0.8 \times 10^{-13} \mathrm{~N}$
2 $1.6 \times 10^{-13} \mathrm{~N}$
3 $8.0 \times 10^{-13} \mathrm{~N}$
4 $8.01 \times 10^{-13} \mathrm{~N}$
5 $16 \times 10^{-13} \mathrm{~N}$
Moving Charges & Magnetism

153791 A loop $\mathrm{PQR}$ carries a current of $2 \mathrm{~A}$ as shown. A uniform magnetic field $(B=2 T)$ is parallel to plane of the loop. The magnetic torque on the loop is

1 $16 \mathrm{Nm}$
2 $8 \mathrm{Nm}$
3 Zero
4 $4 \mathrm{Nm}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153788 A long horizontal wire, rigidly supported, carries a current of $65 \mathrm{~A}$. A fine wire carrying a current of $10 \mathrm{~A}$ and weighing $0.048 \mathrm{Nm}^{-1}$ is placed parallel and directly above the first wire. The necessary distance between the two wires to support the second wire by only magnetic repulsion will be: $\left(\mu_{0}=4 \pi \times 10^{-7}\right.$ S.I unit)

1 $2.708 \times 10^{-3} \mathrm{~m}$
2 $4.83 \times 10^{-3} \mathrm{~m}$
3 $1.52 \times 10^{-3} \mathrm{~m}$
4 $3.05 \times 10^{-3} \mathrm{~m}$
Moving Charges & Magnetism

153789 A wire of arbitrary shape carries a current $I=$ 2 A. Consider the portion of wire between $(0,0,0)$ and $(4,4,4)$. A magnetic filled given by $B=\left(1.2 \times 10^{-4} \hat{\mathbf{i}}+2 \times 10^{-4} \hat{\mathbf{j}}\right)$ exists in the region. The force acting on the given portion of the wire is-

1 $F=[(\hat{i}+\hat{j}+\hat{k}) \times(12 \hat{i}+12 \hat{j})] N$
2 $F=8 \times 10^{-4}[(\hat{i}+\hat{j}+\hat{k}) \times(1.2 \hat{i}+2 \hat{j})] \mathrm{N}$
3 Zero
4 None of the above
Moving Charges & Magnetism

153790 A proton moves with a speed of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ along the $x$ - axis. It enters a region where there is a magnetic field of magnitude 2.0 Tesla directed at an angle of $30^{\circ}$ to the \(x\)-axis and lying in the \(x y\)-plane. The magnitude
of the magnetic force on the proton is

1 $0.8 \times 10^{-13} \mathrm{~N}$
2 $1.6 \times 10^{-13} \mathrm{~N}$
3 $8.0 \times 10^{-13} \mathrm{~N}$
4 $8.01 \times 10^{-13} \mathrm{~N}$
5 $16 \times 10^{-13} \mathrm{~N}$
Moving Charges & Magnetism

153791 A loop $\mathrm{PQR}$ carries a current of $2 \mathrm{~A}$ as shown. A uniform magnetic field $(B=2 T)$ is parallel to plane of the loop. The magnetic torque on the loop is

1 $16 \mathrm{Nm}$
2 $8 \mathrm{Nm}$
3 Zero
4 $4 \mathrm{Nm}$