153768 A current carrying conductor has $8 \times 10^{22}$ free electrons per meter length having drift velocity $10^{-4} \mathrm{~ms}^{-1}$. If a magnetic field of $5 \mathrm{~T}$ is applied perpendicular to the conductor, then the force per unit length of the conductor in $\mathrm{Nm}^{-1}$ is
153772 A wire of length $1 \mathrm{~m}$ is perpendicular to $x-y$ plane. It is moved with velocity $\overrightarrow{\mathbf{v}}=(\mathbf{3} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}}) \mathbf{m} / \mathbf{s}$ through a region of uniform induction $\vec{B}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}})$ T. The potential difference between the ends of the wire is
153768 A current carrying conductor has $8 \times 10^{22}$ free electrons per meter length having drift velocity $10^{-4} \mathrm{~ms}^{-1}$. If a magnetic field of $5 \mathrm{~T}$ is applied perpendicular to the conductor, then the force per unit length of the conductor in $\mathrm{Nm}^{-1}$ is
153772 A wire of length $1 \mathrm{~m}$ is perpendicular to $x-y$ plane. It is moved with velocity $\overrightarrow{\mathbf{v}}=(\mathbf{3} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}}) \mathbf{m} / \mathbf{s}$ through a region of uniform induction $\vec{B}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}})$ T. The potential difference between the ends of the wire is
153768 A current carrying conductor has $8 \times 10^{22}$ free electrons per meter length having drift velocity $10^{-4} \mathrm{~ms}^{-1}$. If a magnetic field of $5 \mathrm{~T}$ is applied perpendicular to the conductor, then the force per unit length of the conductor in $\mathrm{Nm}^{-1}$ is
153772 A wire of length $1 \mathrm{~m}$ is perpendicular to $x-y$ plane. It is moved with velocity $\overrightarrow{\mathbf{v}}=(\mathbf{3} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}}) \mathbf{m} / \mathbf{s}$ through a region of uniform induction $\vec{B}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}})$ T. The potential difference between the ends of the wire is
153768 A current carrying conductor has $8 \times 10^{22}$ free electrons per meter length having drift velocity $10^{-4} \mathrm{~ms}^{-1}$. If a magnetic field of $5 \mathrm{~T}$ is applied perpendicular to the conductor, then the force per unit length of the conductor in $\mathrm{Nm}^{-1}$ is
153772 A wire of length $1 \mathrm{~m}$ is perpendicular to $x-y$ plane. It is moved with velocity $\overrightarrow{\mathbf{v}}=(\mathbf{3} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}}) \mathbf{m} / \mathbf{s}$ through a region of uniform induction $\vec{B}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}})$ T. The potential difference between the ends of the wire is