04. Force and Torque on Current Carrying Conductor
Moving Charges & Magnetism

153767 A circular coil of 10 turns and radius $10 \mathrm{~cm}$ is placed in a uniform magnetic field of $0.1 \mathrm{~T}$ normal to the plane of the coil. If the current in the coil is $5 \mathrm{~A}$, then the magnitude of the torque on the coil is

1 $500 \pi \mathrm{N}-\mathrm{m}$
2 $0.05 \pi \mathrm{N}-\mathrm{m}$
3 $0.005 \pi \mathrm{N}-\mathrm{m}$
4 zero
Moving Charges & Magnetism

153768 A current carrying conductor has $8 \times 10^{22}$ free electrons per meter length having drift velocity $10^{-4} \mathrm{~ms}^{-1}$. If a magnetic field of $5 \mathrm{~T}$ is applied perpendicular to the conductor, then the force per unit length of the conductor in $\mathrm{Nm}^{-1}$ is

1 64
2 3.2
3 16
4 6.4
Moving Charges & Magnetism

153771 Two very long wires carry current $50 \mathrm{~A}$ and $100 \mathrm{~A}$ and are separated by $20 \mathrm{~cm}$. The magnitude of the magnetic force acting on $1 \mathrm{~cm}$ length of the wire is (Let $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$ )

1 $500 \mu \mathrm{N}$
2 $50 \mu \mathrm{N}$
3 $25 \mu \mathrm{N}$
4 $5 \mu \mathrm{N}$
Moving Charges & Magnetism

153772 A wire of length $1 \mathrm{~m}$ is perpendicular to $x-y$ plane. It is moved with velocity $\overrightarrow{\mathbf{v}}=(\mathbf{3} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}}) \mathbf{m} / \mathbf{s}$ through a region of uniform induction $\vec{B}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}})$ T. The potential difference between the ends of the wire is

1 $1 \mathrm{~V}$
2 $1.5 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $3 \mathrm{~V}$
Moving Charges & Magnetism

153767 A circular coil of 10 turns and radius $10 \mathrm{~cm}$ is placed in a uniform magnetic field of $0.1 \mathrm{~T}$ normal to the plane of the coil. If the current in the coil is $5 \mathrm{~A}$, then the magnitude of the torque on the coil is

1 $500 \pi \mathrm{N}-\mathrm{m}$
2 $0.05 \pi \mathrm{N}-\mathrm{m}$
3 $0.005 \pi \mathrm{N}-\mathrm{m}$
4 zero
Moving Charges & Magnetism

153768 A current carrying conductor has $8 \times 10^{22}$ free electrons per meter length having drift velocity $10^{-4} \mathrm{~ms}^{-1}$. If a magnetic field of $5 \mathrm{~T}$ is applied perpendicular to the conductor, then the force per unit length of the conductor in $\mathrm{Nm}^{-1}$ is

1 64
2 3.2
3 16
4 6.4
Moving Charges & Magnetism

153771 Two very long wires carry current $50 \mathrm{~A}$ and $100 \mathrm{~A}$ and are separated by $20 \mathrm{~cm}$. The magnitude of the magnetic force acting on $1 \mathrm{~cm}$ length of the wire is (Let $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$ )

1 $500 \mu \mathrm{N}$
2 $50 \mu \mathrm{N}$
3 $25 \mu \mathrm{N}$
4 $5 \mu \mathrm{N}$
Moving Charges & Magnetism

153772 A wire of length $1 \mathrm{~m}$ is perpendicular to $x-y$ plane. It is moved with velocity $\overrightarrow{\mathbf{v}}=(\mathbf{3} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}}) \mathbf{m} / \mathbf{s}$ through a region of uniform induction $\vec{B}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}})$ T. The potential difference between the ends of the wire is

1 $1 \mathrm{~V}$
2 $1.5 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $3 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153767 A circular coil of 10 turns and radius $10 \mathrm{~cm}$ is placed in a uniform magnetic field of $0.1 \mathrm{~T}$ normal to the plane of the coil. If the current in the coil is $5 \mathrm{~A}$, then the magnitude of the torque on the coil is

1 $500 \pi \mathrm{N}-\mathrm{m}$
2 $0.05 \pi \mathrm{N}-\mathrm{m}$
3 $0.005 \pi \mathrm{N}-\mathrm{m}$
4 zero
Moving Charges & Magnetism

153768 A current carrying conductor has $8 \times 10^{22}$ free electrons per meter length having drift velocity $10^{-4} \mathrm{~ms}^{-1}$. If a magnetic field of $5 \mathrm{~T}$ is applied perpendicular to the conductor, then the force per unit length of the conductor in $\mathrm{Nm}^{-1}$ is

1 64
2 3.2
3 16
4 6.4
Moving Charges & Magnetism

153771 Two very long wires carry current $50 \mathrm{~A}$ and $100 \mathrm{~A}$ and are separated by $20 \mathrm{~cm}$. The magnitude of the magnetic force acting on $1 \mathrm{~cm}$ length of the wire is (Let $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$ )

1 $500 \mu \mathrm{N}$
2 $50 \mu \mathrm{N}$
3 $25 \mu \mathrm{N}$
4 $5 \mu \mathrm{N}$
Moving Charges & Magnetism

153772 A wire of length $1 \mathrm{~m}$ is perpendicular to $x-y$ plane. It is moved with velocity $\overrightarrow{\mathbf{v}}=(\mathbf{3} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}}) \mathbf{m} / \mathbf{s}$ through a region of uniform induction $\vec{B}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}})$ T. The potential difference between the ends of the wire is

1 $1 \mathrm{~V}$
2 $1.5 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $3 \mathrm{~V}$
Moving Charges & Magnetism

153767 A circular coil of 10 turns and radius $10 \mathrm{~cm}$ is placed in a uniform magnetic field of $0.1 \mathrm{~T}$ normal to the plane of the coil. If the current in the coil is $5 \mathrm{~A}$, then the magnitude of the torque on the coil is

1 $500 \pi \mathrm{N}-\mathrm{m}$
2 $0.05 \pi \mathrm{N}-\mathrm{m}$
3 $0.005 \pi \mathrm{N}-\mathrm{m}$
4 zero
Moving Charges & Magnetism

153768 A current carrying conductor has $8 \times 10^{22}$ free electrons per meter length having drift velocity $10^{-4} \mathrm{~ms}^{-1}$. If a magnetic field of $5 \mathrm{~T}$ is applied perpendicular to the conductor, then the force per unit length of the conductor in $\mathrm{Nm}^{-1}$ is

1 64
2 3.2
3 16
4 6.4
Moving Charges & Magnetism

153771 Two very long wires carry current $50 \mathrm{~A}$ and $100 \mathrm{~A}$ and are separated by $20 \mathrm{~cm}$. The magnitude of the magnetic force acting on $1 \mathrm{~cm}$ length of the wire is (Let $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$ )

1 $500 \mu \mathrm{N}$
2 $50 \mu \mathrm{N}$
3 $25 \mu \mathrm{N}$
4 $5 \mu \mathrm{N}$
Moving Charges & Magnetism

153772 A wire of length $1 \mathrm{~m}$ is perpendicular to $x-y$ plane. It is moved with velocity $\overrightarrow{\mathbf{v}}=(\mathbf{3} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+\mathbf{2} \hat{\mathbf{k}}) \mathbf{m} / \mathbf{s}$ through a region of uniform induction $\vec{B}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}})$ T. The potential difference between the ends of the wire is

1 $1 \mathrm{~V}$
2 $1.5 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $3 \mathrm{~V}$