04. Force and Torque on Current Carrying Conductor
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153761 Two parallel wires carry currents of $3 A$ and 4 $A$ in opposite direction. If the distance between them is $10 \mathrm{~cm}$, the magnitude of force per unit length and the nature of the force will be

1 $2.4 \times 10^{-5} \mathrm{~N}$; attractive
2 $4.2 \times 10^{-1}, \mathrm{~N}$; repulsive
3 $2.4 \times 10^{-5} \mathrm{~N}$; repulsive
4 $4.2 \times 10^{-5} \mathrm{~N}$; attractive
Moving Charges & Magnetism

153763 A bar magnet of length $10 \mathrm{~cm}$ and having the pole strength equal to $10^{-3} \mathrm{~A}-\mathrm{m}$ is kept in a magnetic field having magnetic induction $B$ equal to $4 \pi \times 10^{-3} \mathrm{~T}$. It makes an angle of $30^{\circ}$ with the direction of magnetic induction. The value of the torque acting on the magnet is

1 $2 \pi \times 10^{-7} \mathrm{Nm}$
2 $2 \pi \times 10^{-5} \mathrm{Nm}$
3 $0.5 \mathrm{Nm}$
4 $0.5 \times 10^{2} \mathrm{Nm}$
Moving Charges & Magnetism

153764 A proton enters a magnetic field of flux density $1.5 \mathrm{~Wb} \mathrm{~m}^{-2}$ with a velocity of $2 \times 10^{7} \mathrm{~ms}^{-1}$ at an angle of $30^{\circ}$ with the field. The force on the proton will be

1 $2.4 \times 10^{-12} \mathrm{~N}$
2 $24 \times 10^{-12} \mathrm{~N}$
3 $0.24 \times 10^{-12} \mathrm{~N}$
4 $0.024 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153766 A straight wire of mass $0.2 \mathrm{~kg}$ and length $1.5 \mathrm{~m}$ carries a current $2 \mathrm{~A}$ is shown in the figure. It is suspended in mid-air by a uniform magnetic field $B$ pointing to the plane of paper. The magnitude of magnetic field is (ignore, earth's magnetic field and assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )
$\mathrm{I}=2 \mathrm{~A}$ $\otimes B$

1 $0.55 \mathrm{~T}$
2 $0.67 \mathrm{~T}$
3 $0.75 \mathrm{~T}$
4 $0.85 \mathrm{~T}$
Moving Charges & Magnetism

153761 Two parallel wires carry currents of $3 A$ and 4 $A$ in opposite direction. If the distance between them is $10 \mathrm{~cm}$, the magnitude of force per unit length and the nature of the force will be

1 $2.4 \times 10^{-5} \mathrm{~N}$; attractive
2 $4.2 \times 10^{-1}, \mathrm{~N}$; repulsive
3 $2.4 \times 10^{-5} \mathrm{~N}$; repulsive
4 $4.2 \times 10^{-5} \mathrm{~N}$; attractive
Moving Charges & Magnetism

153763 A bar magnet of length $10 \mathrm{~cm}$ and having the pole strength equal to $10^{-3} \mathrm{~A}-\mathrm{m}$ is kept in a magnetic field having magnetic induction $B$ equal to $4 \pi \times 10^{-3} \mathrm{~T}$. It makes an angle of $30^{\circ}$ with the direction of magnetic induction. The value of the torque acting on the magnet is

1 $2 \pi \times 10^{-7} \mathrm{Nm}$
2 $2 \pi \times 10^{-5} \mathrm{Nm}$
3 $0.5 \mathrm{Nm}$
4 $0.5 \times 10^{2} \mathrm{Nm}$
Moving Charges & Magnetism

153764 A proton enters a magnetic field of flux density $1.5 \mathrm{~Wb} \mathrm{~m}^{-2}$ with a velocity of $2 \times 10^{7} \mathrm{~ms}^{-1}$ at an angle of $30^{\circ}$ with the field. The force on the proton will be

1 $2.4 \times 10^{-12} \mathrm{~N}$
2 $24 \times 10^{-12} \mathrm{~N}$
3 $0.24 \times 10^{-12} \mathrm{~N}$
4 $0.024 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153766 A straight wire of mass $0.2 \mathrm{~kg}$ and length $1.5 \mathrm{~m}$ carries a current $2 \mathrm{~A}$ is shown in the figure. It is suspended in mid-air by a uniform magnetic field $B$ pointing to the plane of paper. The magnitude of magnetic field is (ignore, earth's magnetic field and assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )
$\mathrm{I}=2 \mathrm{~A}$ $\otimes B$

1 $0.55 \mathrm{~T}$
2 $0.67 \mathrm{~T}$
3 $0.75 \mathrm{~T}$
4 $0.85 \mathrm{~T}$
Moving Charges & Magnetism

153761 Two parallel wires carry currents of $3 A$ and 4 $A$ in opposite direction. If the distance between them is $10 \mathrm{~cm}$, the magnitude of force per unit length and the nature of the force will be

1 $2.4 \times 10^{-5} \mathrm{~N}$; attractive
2 $4.2 \times 10^{-1}, \mathrm{~N}$; repulsive
3 $2.4 \times 10^{-5} \mathrm{~N}$; repulsive
4 $4.2 \times 10^{-5} \mathrm{~N}$; attractive
Moving Charges & Magnetism

153763 A bar magnet of length $10 \mathrm{~cm}$ and having the pole strength equal to $10^{-3} \mathrm{~A}-\mathrm{m}$ is kept in a magnetic field having magnetic induction $B$ equal to $4 \pi \times 10^{-3} \mathrm{~T}$. It makes an angle of $30^{\circ}$ with the direction of magnetic induction. The value of the torque acting on the magnet is

1 $2 \pi \times 10^{-7} \mathrm{Nm}$
2 $2 \pi \times 10^{-5} \mathrm{Nm}$
3 $0.5 \mathrm{Nm}$
4 $0.5 \times 10^{2} \mathrm{Nm}$
Moving Charges & Magnetism

153764 A proton enters a magnetic field of flux density $1.5 \mathrm{~Wb} \mathrm{~m}^{-2}$ with a velocity of $2 \times 10^{7} \mathrm{~ms}^{-1}$ at an angle of $30^{\circ}$ with the field. The force on the proton will be

1 $2.4 \times 10^{-12} \mathrm{~N}$
2 $24 \times 10^{-12} \mathrm{~N}$
3 $0.24 \times 10^{-12} \mathrm{~N}$
4 $0.024 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153766 A straight wire of mass $0.2 \mathrm{~kg}$ and length $1.5 \mathrm{~m}$ carries a current $2 \mathrm{~A}$ is shown in the figure. It is suspended in mid-air by a uniform magnetic field $B$ pointing to the plane of paper. The magnitude of magnetic field is (ignore, earth's magnetic field and assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )
$\mathrm{I}=2 \mathrm{~A}$ $\otimes B$

1 $0.55 \mathrm{~T}$
2 $0.67 \mathrm{~T}$
3 $0.75 \mathrm{~T}$
4 $0.85 \mathrm{~T}$
Moving Charges & Magnetism

153761 Two parallel wires carry currents of $3 A$ and 4 $A$ in opposite direction. If the distance between them is $10 \mathrm{~cm}$, the magnitude of force per unit length and the nature of the force will be

1 $2.4 \times 10^{-5} \mathrm{~N}$; attractive
2 $4.2 \times 10^{-1}, \mathrm{~N}$; repulsive
3 $2.4 \times 10^{-5} \mathrm{~N}$; repulsive
4 $4.2 \times 10^{-5} \mathrm{~N}$; attractive
Moving Charges & Magnetism

153763 A bar magnet of length $10 \mathrm{~cm}$ and having the pole strength equal to $10^{-3} \mathrm{~A}-\mathrm{m}$ is kept in a magnetic field having magnetic induction $B$ equal to $4 \pi \times 10^{-3} \mathrm{~T}$. It makes an angle of $30^{\circ}$ with the direction of magnetic induction. The value of the torque acting on the magnet is

1 $2 \pi \times 10^{-7} \mathrm{Nm}$
2 $2 \pi \times 10^{-5} \mathrm{Nm}$
3 $0.5 \mathrm{Nm}$
4 $0.5 \times 10^{2} \mathrm{Nm}$
Moving Charges & Magnetism

153764 A proton enters a magnetic field of flux density $1.5 \mathrm{~Wb} \mathrm{~m}^{-2}$ with a velocity of $2 \times 10^{7} \mathrm{~ms}^{-1}$ at an angle of $30^{\circ}$ with the field. The force on the proton will be

1 $2.4 \times 10^{-12} \mathrm{~N}$
2 $24 \times 10^{-12} \mathrm{~N}$
3 $0.24 \times 10^{-12} \mathrm{~N}$
4 $0.024 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153766 A straight wire of mass $0.2 \mathrm{~kg}$ and length $1.5 \mathrm{~m}$ carries a current $2 \mathrm{~A}$ is shown in the figure. It is suspended in mid-air by a uniform magnetic field $B$ pointing to the plane of paper. The magnitude of magnetic field is (ignore, earth's magnetic field and assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )
$\mathrm{I}=2 \mathrm{~A}$ $\otimes B$

1 $0.55 \mathrm{~T}$
2 $0.67 \mathrm{~T}$
3 $0.75 \mathrm{~T}$
4 $0.85 \mathrm{~T}$