03. Motion of Charge Particle in Combined of Electric and Magnetic Field
Moving Charges & Magnetism

153718 The intensity of magnetic field due to an isolated pole of strength $m$ at a point distant $r$ from it will be

1 $\mathrm{m} / \mathrm{r}^{2}$
2 $\mathrm{mr}^{2}$
3 $\mathrm{r}^{2} / \mathrm{m}$
4 $\mathrm{m} / \mathrm{r}$
Moving Charges & Magnetism

153719 A proton, a deuteron and an alpha particle are accelerated through same potential difference and then they enter in a normal uniform magnetic field. The ratio of their kinetic energies will be

1 $2: 1: 3$
2 $1: 1: 2$
3 $1: 1: 1$
4 $1: 2: 4$
Moving Charges & Magnetism

153723 A charged particle moves along a circle under the action of magnetic and electric fields, then this region of space may have

1 $\mathrm{E}=0, \mathrm{~B}=0$
2 $\mathrm{E}=0, \mathrm{~B} \neq 0$
3 $\mathrm{E} \neq 0, \mathrm{~B}=0$
4 $\mathrm{E} \neq 0, \mathrm{~B} \neq 0$
Moving Charges & Magnetism

153729 A charge $q$ moves with velocity $\vec{v}$ in the direction of the applied field $\vec{B}$. The force that acts on the charge is

1 $\overrightarrow{\mathrm{F}}=\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$
2 $\vec{F}=q(\vec{v} \cdot \vec{B})$
3 $\vec{F}=\frac{\vec{v} \times \vec{B}}{q}$
4 $\overrightarrow{\mathrm{F}}=0$
Moving Charges & Magnetism

153718 The intensity of magnetic field due to an isolated pole of strength $m$ at a point distant $r$ from it will be

1 $\mathrm{m} / \mathrm{r}^{2}$
2 $\mathrm{mr}^{2}$
3 $\mathrm{r}^{2} / \mathrm{m}$
4 $\mathrm{m} / \mathrm{r}$
Moving Charges & Magnetism

153719 A proton, a deuteron and an alpha particle are accelerated through same potential difference and then they enter in a normal uniform magnetic field. The ratio of their kinetic energies will be

1 $2: 1: 3$
2 $1: 1: 2$
3 $1: 1: 1$
4 $1: 2: 4$
Moving Charges & Magnetism

153723 A charged particle moves along a circle under the action of magnetic and electric fields, then this region of space may have

1 $\mathrm{E}=0, \mathrm{~B}=0$
2 $\mathrm{E}=0, \mathrm{~B} \neq 0$
3 $\mathrm{E} \neq 0, \mathrm{~B}=0$
4 $\mathrm{E} \neq 0, \mathrm{~B} \neq 0$
Moving Charges & Magnetism

153729 A charge $q$ moves with velocity $\vec{v}$ in the direction of the applied field $\vec{B}$. The force that acts on the charge is

1 $\overrightarrow{\mathrm{F}}=\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$
2 $\vec{F}=q(\vec{v} \cdot \vec{B})$
3 $\vec{F}=\frac{\vec{v} \times \vec{B}}{q}$
4 $\overrightarrow{\mathrm{F}}=0$
Moving Charges & Magnetism

153718 The intensity of magnetic field due to an isolated pole of strength $m$ at a point distant $r$ from it will be

1 $\mathrm{m} / \mathrm{r}^{2}$
2 $\mathrm{mr}^{2}$
3 $\mathrm{r}^{2} / \mathrm{m}$
4 $\mathrm{m} / \mathrm{r}$
Moving Charges & Magnetism

153719 A proton, a deuteron and an alpha particle are accelerated through same potential difference and then they enter in a normal uniform magnetic field. The ratio of their kinetic energies will be

1 $2: 1: 3$
2 $1: 1: 2$
3 $1: 1: 1$
4 $1: 2: 4$
Moving Charges & Magnetism

153723 A charged particle moves along a circle under the action of magnetic and electric fields, then this region of space may have

1 $\mathrm{E}=0, \mathrm{~B}=0$
2 $\mathrm{E}=0, \mathrm{~B} \neq 0$
3 $\mathrm{E} \neq 0, \mathrm{~B}=0$
4 $\mathrm{E} \neq 0, \mathrm{~B} \neq 0$
Moving Charges & Magnetism

153729 A charge $q$ moves with velocity $\vec{v}$ in the direction of the applied field $\vec{B}$. The force that acts on the charge is

1 $\overrightarrow{\mathrm{F}}=\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$
2 $\vec{F}=q(\vec{v} \cdot \vec{B})$
3 $\vec{F}=\frac{\vec{v} \times \vec{B}}{q}$
4 $\overrightarrow{\mathrm{F}}=0$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153718 The intensity of magnetic field due to an isolated pole of strength $m$ at a point distant $r$ from it will be

1 $\mathrm{m} / \mathrm{r}^{2}$
2 $\mathrm{mr}^{2}$
3 $\mathrm{r}^{2} / \mathrm{m}$
4 $\mathrm{m} / \mathrm{r}$
Moving Charges & Magnetism

153719 A proton, a deuteron and an alpha particle are accelerated through same potential difference and then they enter in a normal uniform magnetic field. The ratio of their kinetic energies will be

1 $2: 1: 3$
2 $1: 1: 2$
3 $1: 1: 1$
4 $1: 2: 4$
Moving Charges & Magnetism

153723 A charged particle moves along a circle under the action of magnetic and electric fields, then this region of space may have

1 $\mathrm{E}=0, \mathrm{~B}=0$
2 $\mathrm{E}=0, \mathrm{~B} \neq 0$
3 $\mathrm{E} \neq 0, \mathrm{~B}=0$
4 $\mathrm{E} \neq 0, \mathrm{~B} \neq 0$
Moving Charges & Magnetism

153729 A charge $q$ moves with velocity $\vec{v}$ in the direction of the applied field $\vec{B}$. The force that acts on the charge is

1 $\overrightarrow{\mathrm{F}}=\mathrm{q}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$
2 $\vec{F}=q(\vec{v} \cdot \vec{B})$
3 $\vec{F}=\frac{\vec{v} \times \vec{B}}{q}$
4 $\overrightarrow{\mathrm{F}}=0$