03. Motion of Charge Particle in Combined of Electric and Magnetic Field
Moving Charges & Magnetism

153711 The magnetic flux in a closed circuit of resistance $10 \Omega$ varies with time as $\phi=\left(2 t-4 t^{2}+1\right)$. The current in the loop will change its direction after a time of

1 $0.25 \mathrm{sec}$
2 $0.5 \mathrm{sec}$
3 $1 \mathrm{sec}$
4 none
Moving Charges & Magnetism

153712 A long straight wire of radius $R$ carries current i. The magnetic field inside the wire at distance $r$ from its centre is expressed as:

1 $\left(\frac{\mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot r$
2 $\left(\frac{2 \mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
3 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
4 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}}\right) \cdot \mathrm{r}$
Moving Charges & Magnetism

153713 The proton of energy $1 \mathrm{MeV}$ describes a circular path in plane at right angles to a uniform magnetic field of $6.28 \times 10^{-4} \mathrm{~T}$. The mass of the proton is $1.7 \times 10^{-27} \mathrm{Kg}$. The cyclotron frequency of the proton is very nearly equal to

1 $10^{7} \mathrm{~Hz}$
2 $10^{5} \mathrm{~Hz}$
3 $10^{6} \mathrm{~Hz}$
4 $10^{4} \mathrm{~Hz}$
Moving Charges & Magnetism

153715 A neutron, a proton an electron and an $\alpha-$ particle enter a region of uniform magnetic field with the same velocities. The magnetic field is perpendicular and directed into the plane of the paper. The tracks of the particles are labelled in the figure. The electron follows the track.

1 $\mathrm{A}$
2 $\mathrm{B}$
3 $\mathrm{C}$
4 $\mathrm{D}$
Moving Charges & Magnetism

153716 A particle of charge $e$ and mass $m$ moves with a velocity $v$ in a magnetic field $B$ applied perpendicular to the motion of the particle. The radius $r$ of its path in the field is :

1 $\frac{\mathrm{mv}}{\mathrm{Be}}$
2 $\frac{\mathrm{Be}}{\mathrm{mv}}$
3 $\frac{\mathrm{ev}}{\mathrm{Bm}}$
4 $\frac{\mathrm{Bv}}{\mathrm{em}}$
Moving Charges & Magnetism

153711 The magnetic flux in a closed circuit of resistance $10 \Omega$ varies with time as $\phi=\left(2 t-4 t^{2}+1\right)$. The current in the loop will change its direction after a time of

1 $0.25 \mathrm{sec}$
2 $0.5 \mathrm{sec}$
3 $1 \mathrm{sec}$
4 none
Moving Charges & Magnetism

153712 A long straight wire of radius $R$ carries current i. The magnetic field inside the wire at distance $r$ from its centre is expressed as:

1 $\left(\frac{\mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot r$
2 $\left(\frac{2 \mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
3 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
4 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}}\right) \cdot \mathrm{r}$
Moving Charges & Magnetism

153713 The proton of energy $1 \mathrm{MeV}$ describes a circular path in plane at right angles to a uniform magnetic field of $6.28 \times 10^{-4} \mathrm{~T}$. The mass of the proton is $1.7 \times 10^{-27} \mathrm{Kg}$. The cyclotron frequency of the proton is very nearly equal to

1 $10^{7} \mathrm{~Hz}$
2 $10^{5} \mathrm{~Hz}$
3 $10^{6} \mathrm{~Hz}$
4 $10^{4} \mathrm{~Hz}$
Moving Charges & Magnetism

153715 A neutron, a proton an electron and an $\alpha-$ particle enter a region of uniform magnetic field with the same velocities. The magnetic field is perpendicular and directed into the plane of the paper. The tracks of the particles are labelled in the figure. The electron follows the track.

1 $\mathrm{A}$
2 $\mathrm{B}$
3 $\mathrm{C}$
4 $\mathrm{D}$
Moving Charges & Magnetism

153716 A particle of charge $e$ and mass $m$ moves with a velocity $v$ in a magnetic field $B$ applied perpendicular to the motion of the particle. The radius $r$ of its path in the field is :

1 $\frac{\mathrm{mv}}{\mathrm{Be}}$
2 $\frac{\mathrm{Be}}{\mathrm{mv}}$
3 $\frac{\mathrm{ev}}{\mathrm{Bm}}$
4 $\frac{\mathrm{Bv}}{\mathrm{em}}$
Moving Charges & Magnetism

153711 The magnetic flux in a closed circuit of resistance $10 \Omega$ varies with time as $\phi=\left(2 t-4 t^{2}+1\right)$. The current in the loop will change its direction after a time of

1 $0.25 \mathrm{sec}$
2 $0.5 \mathrm{sec}$
3 $1 \mathrm{sec}$
4 none
Moving Charges & Magnetism

153712 A long straight wire of radius $R$ carries current i. The magnetic field inside the wire at distance $r$ from its centre is expressed as:

1 $\left(\frac{\mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot r$
2 $\left(\frac{2 \mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
3 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
4 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}}\right) \cdot \mathrm{r}$
Moving Charges & Magnetism

153713 The proton of energy $1 \mathrm{MeV}$ describes a circular path in plane at right angles to a uniform magnetic field of $6.28 \times 10^{-4} \mathrm{~T}$. The mass of the proton is $1.7 \times 10^{-27} \mathrm{Kg}$. The cyclotron frequency of the proton is very nearly equal to

1 $10^{7} \mathrm{~Hz}$
2 $10^{5} \mathrm{~Hz}$
3 $10^{6} \mathrm{~Hz}$
4 $10^{4} \mathrm{~Hz}$
Moving Charges & Magnetism

153715 A neutron, a proton an electron and an $\alpha-$ particle enter a region of uniform magnetic field with the same velocities. The magnetic field is perpendicular and directed into the plane of the paper. The tracks of the particles are labelled in the figure. The electron follows the track.

1 $\mathrm{A}$
2 $\mathrm{B}$
3 $\mathrm{C}$
4 $\mathrm{D}$
Moving Charges & Magnetism

153716 A particle of charge $e$ and mass $m$ moves with a velocity $v$ in a magnetic field $B$ applied perpendicular to the motion of the particle. The radius $r$ of its path in the field is :

1 $\frac{\mathrm{mv}}{\mathrm{Be}}$
2 $\frac{\mathrm{Be}}{\mathrm{mv}}$
3 $\frac{\mathrm{ev}}{\mathrm{Bm}}$
4 $\frac{\mathrm{Bv}}{\mathrm{em}}$
Moving Charges & Magnetism

153711 The magnetic flux in a closed circuit of resistance $10 \Omega$ varies with time as $\phi=\left(2 t-4 t^{2}+1\right)$. The current in the loop will change its direction after a time of

1 $0.25 \mathrm{sec}$
2 $0.5 \mathrm{sec}$
3 $1 \mathrm{sec}$
4 none
Moving Charges & Magnetism

153712 A long straight wire of radius $R$ carries current i. The magnetic field inside the wire at distance $r$ from its centre is expressed as:

1 $\left(\frac{\mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot r$
2 $\left(\frac{2 \mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
3 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
4 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}}\right) \cdot \mathrm{r}$
Moving Charges & Magnetism

153713 The proton of energy $1 \mathrm{MeV}$ describes a circular path in plane at right angles to a uniform magnetic field of $6.28 \times 10^{-4} \mathrm{~T}$. The mass of the proton is $1.7 \times 10^{-27} \mathrm{Kg}$. The cyclotron frequency of the proton is very nearly equal to

1 $10^{7} \mathrm{~Hz}$
2 $10^{5} \mathrm{~Hz}$
3 $10^{6} \mathrm{~Hz}$
4 $10^{4} \mathrm{~Hz}$
Moving Charges & Magnetism

153715 A neutron, a proton an electron and an $\alpha-$ particle enter a region of uniform magnetic field with the same velocities. The magnetic field is perpendicular and directed into the plane of the paper. The tracks of the particles are labelled in the figure. The electron follows the track.

1 $\mathrm{A}$
2 $\mathrm{B}$
3 $\mathrm{C}$
4 $\mathrm{D}$
Moving Charges & Magnetism

153716 A particle of charge $e$ and mass $m$ moves with a velocity $v$ in a magnetic field $B$ applied perpendicular to the motion of the particle. The radius $r$ of its path in the field is :

1 $\frac{\mathrm{mv}}{\mathrm{Be}}$
2 $\frac{\mathrm{Be}}{\mathrm{mv}}$
3 $\frac{\mathrm{ev}}{\mathrm{Bm}}$
4 $\frac{\mathrm{Bv}}{\mathrm{em}}$
Moving Charges & Magnetism

153711 The magnetic flux in a closed circuit of resistance $10 \Omega$ varies with time as $\phi=\left(2 t-4 t^{2}+1\right)$. The current in the loop will change its direction after a time of

1 $0.25 \mathrm{sec}$
2 $0.5 \mathrm{sec}$
3 $1 \mathrm{sec}$
4 none
Moving Charges & Magnetism

153712 A long straight wire of radius $R$ carries current i. The magnetic field inside the wire at distance $r$ from its centre is expressed as:

1 $\left(\frac{\mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot r$
2 $\left(\frac{2 \mu_{0} \mathrm{i}}{\pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
3 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}^{2}}\right) \cdot \mathrm{r}$
4 $\left(\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}}\right) \cdot \mathrm{r}$
Moving Charges & Magnetism

153713 The proton of energy $1 \mathrm{MeV}$ describes a circular path in plane at right angles to a uniform magnetic field of $6.28 \times 10^{-4} \mathrm{~T}$. The mass of the proton is $1.7 \times 10^{-27} \mathrm{Kg}$. The cyclotron frequency of the proton is very nearly equal to

1 $10^{7} \mathrm{~Hz}$
2 $10^{5} \mathrm{~Hz}$
3 $10^{6} \mathrm{~Hz}$
4 $10^{4} \mathrm{~Hz}$
Moving Charges & Magnetism

153715 A neutron, a proton an electron and an $\alpha-$ particle enter a region of uniform magnetic field with the same velocities. The magnetic field is perpendicular and directed into the plane of the paper. The tracks of the particles are labelled in the figure. The electron follows the track.

1 $\mathrm{A}$
2 $\mathrm{B}$
3 $\mathrm{C}$
4 $\mathrm{D}$
Moving Charges & Magnetism

153716 A particle of charge $e$ and mass $m$ moves with a velocity $v$ in a magnetic field $B$ applied perpendicular to the motion of the particle. The radius $r$ of its path in the field is :

1 $\frac{\mathrm{mv}}{\mathrm{Be}}$
2 $\frac{\mathrm{Be}}{\mathrm{mv}}$
3 $\frac{\mathrm{ev}}{\mathrm{Bm}}$
4 $\frac{\mathrm{Bv}}{\mathrm{em}}$