02. Motion of Charge Particle in Magnetic Field
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153613 An $\alpha$-particle and a deuteron projected with equal kinetic energies describe circular paths of radii $r_{1}$ and $r_{2}$ respectively in a uniform magnetic field. The ratio $r_{1} / r_{2}$ is-

1 1
2 2
3 $\frac{1}{\sqrt{2}}$
4 $\sqrt{2}$
Moving Charges & Magnetism

153614 An electron moves at right angle to a magnetic field of $1.5 \times 10^{-2} \mathrm{~T}$ with a speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge on the electron is $1.7 \times 10^{11}$ $\mathrm{C} / \mathrm{kg}$, the radius of the circular path will be-

1 $2.9 \mathrm{~cm}$
2 $3.9 \mathrm{~cm}$
3 $2.35 \mathrm{~cm}$
4 $2 \mathrm{~cm}$
Moving Charges & Magnetism

153615 A proton is moving in a uniform magnetic field $B$ in a circular path of radius a in a direction perpendicular to $z$-axis along which field $B$ exists. Calculate the angular momentum. If the radius is a charge on proton is $e$.

1 $\frac{\mathrm{Be}}{\mathrm{a}^{2}}$
2 $\mathrm{eB}^{2} \mathrm{a}$
3 $\mathrm{a}^{2} \mathrm{eB}$
4 $\mathrm{aeB}$
Moving Charges & Magnetism

153616 A proton enters a magnetic field of flux density $1.5 \mathrm{~Wb} / \mathrm{m}^{2}$ with a speed of $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$ at angle of $30^{0}$ with the field. The force on a proton will be-

1 $0.24 \times 10^{-12} \mathrm{~N}$
2 $2.4 \times 10^{-12} \mathrm{~N}$
3 $24 \times 10^{-12} \mathrm{~N}$
4 $0.024 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153613 An $\alpha$-particle and a deuteron projected with equal kinetic energies describe circular paths of radii $r_{1}$ and $r_{2}$ respectively in a uniform magnetic field. The ratio $r_{1} / r_{2}$ is-

1 1
2 2
3 $\frac{1}{\sqrt{2}}$
4 $\sqrt{2}$
Moving Charges & Magnetism

153614 An electron moves at right angle to a magnetic field of $1.5 \times 10^{-2} \mathrm{~T}$ with a speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge on the electron is $1.7 \times 10^{11}$ $\mathrm{C} / \mathrm{kg}$, the radius of the circular path will be-

1 $2.9 \mathrm{~cm}$
2 $3.9 \mathrm{~cm}$
3 $2.35 \mathrm{~cm}$
4 $2 \mathrm{~cm}$
Moving Charges & Magnetism

153615 A proton is moving in a uniform magnetic field $B$ in a circular path of radius a in a direction perpendicular to $z$-axis along which field $B$ exists. Calculate the angular momentum. If the radius is a charge on proton is $e$.

1 $\frac{\mathrm{Be}}{\mathrm{a}^{2}}$
2 $\mathrm{eB}^{2} \mathrm{a}$
3 $\mathrm{a}^{2} \mathrm{eB}$
4 $\mathrm{aeB}$
Moving Charges & Magnetism

153616 A proton enters a magnetic field of flux density $1.5 \mathrm{~Wb} / \mathrm{m}^{2}$ with a speed of $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$ at angle of $30^{0}$ with the field. The force on a proton will be-

1 $0.24 \times 10^{-12} \mathrm{~N}$
2 $2.4 \times 10^{-12} \mathrm{~N}$
3 $24 \times 10^{-12} \mathrm{~N}$
4 $0.024 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153613 An $\alpha$-particle and a deuteron projected with equal kinetic energies describe circular paths of radii $r_{1}$ and $r_{2}$ respectively in a uniform magnetic field. The ratio $r_{1} / r_{2}$ is-

1 1
2 2
3 $\frac{1}{\sqrt{2}}$
4 $\sqrt{2}$
Moving Charges & Magnetism

153614 An electron moves at right angle to a magnetic field of $1.5 \times 10^{-2} \mathrm{~T}$ with a speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge on the electron is $1.7 \times 10^{11}$ $\mathrm{C} / \mathrm{kg}$, the radius of the circular path will be-

1 $2.9 \mathrm{~cm}$
2 $3.9 \mathrm{~cm}$
3 $2.35 \mathrm{~cm}$
4 $2 \mathrm{~cm}$
Moving Charges & Magnetism

153615 A proton is moving in a uniform magnetic field $B$ in a circular path of radius a in a direction perpendicular to $z$-axis along which field $B$ exists. Calculate the angular momentum. If the radius is a charge on proton is $e$.

1 $\frac{\mathrm{Be}}{\mathrm{a}^{2}}$
2 $\mathrm{eB}^{2} \mathrm{a}$
3 $\mathrm{a}^{2} \mathrm{eB}$
4 $\mathrm{aeB}$
Moving Charges & Magnetism

153616 A proton enters a magnetic field of flux density $1.5 \mathrm{~Wb} / \mathrm{m}^{2}$ with a speed of $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$ at angle of $30^{0}$ with the field. The force on a proton will be-

1 $0.24 \times 10^{-12} \mathrm{~N}$
2 $2.4 \times 10^{-12} \mathrm{~N}$
3 $24 \times 10^{-12} \mathrm{~N}$
4 $0.024 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153613 An $\alpha$-particle and a deuteron projected with equal kinetic energies describe circular paths of radii $r_{1}$ and $r_{2}$ respectively in a uniform magnetic field. The ratio $r_{1} / r_{2}$ is-

1 1
2 2
3 $\frac{1}{\sqrt{2}}$
4 $\sqrt{2}$
Moving Charges & Magnetism

153614 An electron moves at right angle to a magnetic field of $1.5 \times 10^{-2} \mathrm{~T}$ with a speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge on the electron is $1.7 \times 10^{11}$ $\mathrm{C} / \mathrm{kg}$, the radius of the circular path will be-

1 $2.9 \mathrm{~cm}$
2 $3.9 \mathrm{~cm}$
3 $2.35 \mathrm{~cm}$
4 $2 \mathrm{~cm}$
Moving Charges & Magnetism

153615 A proton is moving in a uniform magnetic field $B$ in a circular path of radius a in a direction perpendicular to $z$-axis along which field $B$ exists. Calculate the angular momentum. If the radius is a charge on proton is $e$.

1 $\frac{\mathrm{Be}}{\mathrm{a}^{2}}$
2 $\mathrm{eB}^{2} \mathrm{a}$
3 $\mathrm{a}^{2} \mathrm{eB}$
4 $\mathrm{aeB}$
Moving Charges & Magnetism

153616 A proton enters a magnetic field of flux density $1.5 \mathrm{~Wb} / \mathrm{m}^{2}$ with a speed of $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$ at angle of $30^{0}$ with the field. The force on a proton will be-

1 $0.24 \times 10^{-12} \mathrm{~N}$
2 $2.4 \times 10^{-12} \mathrm{~N}$
3 $24 \times 10^{-12} \mathrm{~N}$
4 $0.024 \times 10^{-12} \mathrm{~N}$