02. Motion of Charge Particle in Magnetic Field
Moving Charges & Magnetism

153567 An electron of mass $9 \times 10^{-31} \mathrm{~kg}$ and charge 1.6 $\times 10^{-19} \mathrm{C}$ moving with a velocity of $10^{6} \mathrm{~ms}^{-1}$ entered a magnetic field normally and described a circle of radius $10 \mathrm{~cm}$. Then the intensity of the magnetic field is

1 $5.625 \times 10^{-5} \mathrm{~T}$
2 $1.414 \times 10^{-5} \mathrm{~T}$
3 $1.833 \times 10^{-5} \mathrm{~T}$
4 $4.667 \times 10^{-5} \mathrm{~T}$
Moving Charges & Magnetism

153569 A uniform magnetic field acts at a right angles to the direction of motion of a charge particle. As a result, the charge particle moves in a circular path of radius $2 \mathrm{~cm}$. If both the charge and speed of the charge particle are made double, then the radius of the circular path will be:

1 $2.0 \mathrm{~cm}$
2 $0.5 \mathrm{~cm}$
3 $4.0 \mathrm{~cm}$
4 $1.0 \mathrm{~cm}$
Moving Charges & Magnetism

153571 A charged particle $q$ enters a region of uniform magnetic field $B$ (out of page) and is deflected distance $\mathrm{d}$ after travelling a horizontal distance a. The magnitude of the momentum of the particle is-

1 $\frac{\mathrm{qB}}{2}\left[\frac{\mathrm{a}^{2}}{\mathrm{~d}}+\mathrm{d}\right]$
2 $\frac{\mathrm{qB}}{2}$
3 zero
4 $2 \mathrm{qB}$
Moving Charges & Magnetism

153574 An electron moving with velocity $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$, describes a circle in a magnetic field of strength $2 \times 10^{-2} \mathrm{~T}$. If $\frac{\mathrm{e}}{\mathrm{m}}$ of electron is $1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$.
Then the diameter of the circle will be

1 $11 \mathrm{~cm}$
2 $1.1 \mathrm{~cm}$
3 $1.1 \mathrm{~mm}$
4 $1.1 \mathrm{~m}$
Moving Charges & Magnetism

153567 An electron of mass $9 \times 10^{-31} \mathrm{~kg}$ and charge 1.6 $\times 10^{-19} \mathrm{C}$ moving with a velocity of $10^{6} \mathrm{~ms}^{-1}$ entered a magnetic field normally and described a circle of radius $10 \mathrm{~cm}$. Then the intensity of the magnetic field is

1 $5.625 \times 10^{-5} \mathrm{~T}$
2 $1.414 \times 10^{-5} \mathrm{~T}$
3 $1.833 \times 10^{-5} \mathrm{~T}$
4 $4.667 \times 10^{-5} \mathrm{~T}$
Moving Charges & Magnetism

153569 A uniform magnetic field acts at a right angles to the direction of motion of a charge particle. As a result, the charge particle moves in a circular path of radius $2 \mathrm{~cm}$. If both the charge and speed of the charge particle are made double, then the radius of the circular path will be:

1 $2.0 \mathrm{~cm}$
2 $0.5 \mathrm{~cm}$
3 $4.0 \mathrm{~cm}$
4 $1.0 \mathrm{~cm}$
Moving Charges & Magnetism

153571 A charged particle $q$ enters a region of uniform magnetic field $B$ (out of page) and is deflected distance $\mathrm{d}$ after travelling a horizontal distance a. The magnitude of the momentum of the particle is-

1 $\frac{\mathrm{qB}}{2}\left[\frac{\mathrm{a}^{2}}{\mathrm{~d}}+\mathrm{d}\right]$
2 $\frac{\mathrm{qB}}{2}$
3 zero
4 $2 \mathrm{qB}$
Moving Charges & Magnetism

153574 An electron moving with velocity $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$, describes a circle in a magnetic field of strength $2 \times 10^{-2} \mathrm{~T}$. If $\frac{\mathrm{e}}{\mathrm{m}}$ of electron is $1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$.
Then the diameter of the circle will be

1 $11 \mathrm{~cm}$
2 $1.1 \mathrm{~cm}$
3 $1.1 \mathrm{~mm}$
4 $1.1 \mathrm{~m}$
Moving Charges & Magnetism

153567 An electron of mass $9 \times 10^{-31} \mathrm{~kg}$ and charge 1.6 $\times 10^{-19} \mathrm{C}$ moving with a velocity of $10^{6} \mathrm{~ms}^{-1}$ entered a magnetic field normally and described a circle of radius $10 \mathrm{~cm}$. Then the intensity of the magnetic field is

1 $5.625 \times 10^{-5} \mathrm{~T}$
2 $1.414 \times 10^{-5} \mathrm{~T}$
3 $1.833 \times 10^{-5} \mathrm{~T}$
4 $4.667 \times 10^{-5} \mathrm{~T}$
Moving Charges & Magnetism

153569 A uniform magnetic field acts at a right angles to the direction of motion of a charge particle. As a result, the charge particle moves in a circular path of radius $2 \mathrm{~cm}$. If both the charge and speed of the charge particle are made double, then the radius of the circular path will be:

1 $2.0 \mathrm{~cm}$
2 $0.5 \mathrm{~cm}$
3 $4.0 \mathrm{~cm}$
4 $1.0 \mathrm{~cm}$
Moving Charges & Magnetism

153571 A charged particle $q$ enters a region of uniform magnetic field $B$ (out of page) and is deflected distance $\mathrm{d}$ after travelling a horizontal distance a. The magnitude of the momentum of the particle is-

1 $\frac{\mathrm{qB}}{2}\left[\frac{\mathrm{a}^{2}}{\mathrm{~d}}+\mathrm{d}\right]$
2 $\frac{\mathrm{qB}}{2}$
3 zero
4 $2 \mathrm{qB}$
Moving Charges & Magnetism

153574 An electron moving with velocity $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$, describes a circle in a magnetic field of strength $2 \times 10^{-2} \mathrm{~T}$. If $\frac{\mathrm{e}}{\mathrm{m}}$ of electron is $1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$.
Then the diameter of the circle will be

1 $11 \mathrm{~cm}$
2 $1.1 \mathrm{~cm}$
3 $1.1 \mathrm{~mm}$
4 $1.1 \mathrm{~m}$
Moving Charges & Magnetism

153567 An electron of mass $9 \times 10^{-31} \mathrm{~kg}$ and charge 1.6 $\times 10^{-19} \mathrm{C}$ moving with a velocity of $10^{6} \mathrm{~ms}^{-1}$ entered a magnetic field normally and described a circle of radius $10 \mathrm{~cm}$. Then the intensity of the magnetic field is

1 $5.625 \times 10^{-5} \mathrm{~T}$
2 $1.414 \times 10^{-5} \mathrm{~T}$
3 $1.833 \times 10^{-5} \mathrm{~T}$
4 $4.667 \times 10^{-5} \mathrm{~T}$
Moving Charges & Magnetism

153569 A uniform magnetic field acts at a right angles to the direction of motion of a charge particle. As a result, the charge particle moves in a circular path of radius $2 \mathrm{~cm}$. If both the charge and speed of the charge particle are made double, then the radius of the circular path will be:

1 $2.0 \mathrm{~cm}$
2 $0.5 \mathrm{~cm}$
3 $4.0 \mathrm{~cm}$
4 $1.0 \mathrm{~cm}$
Moving Charges & Magnetism

153571 A charged particle $q$ enters a region of uniform magnetic field $B$ (out of page) and is deflected distance $\mathrm{d}$ after travelling a horizontal distance a. The magnitude of the momentum of the particle is-

1 $\frac{\mathrm{qB}}{2}\left[\frac{\mathrm{a}^{2}}{\mathrm{~d}}+\mathrm{d}\right]$
2 $\frac{\mathrm{qB}}{2}$
3 zero
4 $2 \mathrm{qB}$
Moving Charges & Magnetism

153574 An electron moving with velocity $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$, describes a circle in a magnetic field of strength $2 \times 10^{-2} \mathrm{~T}$. If $\frac{\mathrm{e}}{\mathrm{m}}$ of electron is $1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$.
Then the diameter of the circle will be

1 $11 \mathrm{~cm}$
2 $1.1 \mathrm{~cm}$
3 $1.1 \mathrm{~mm}$
4 $1.1 \mathrm{~m}$