02. Motion of Charge Particle in Magnetic Field
Moving Charges & Magnetism

153546 An electron accelerated through a potential difference $V$, passes through a uniform transverse magnetic field and experiences a force $F$. If the accelerating potential is increased to $2 \mathrm{~V}$, the electron in the same magnetic field will experience a force.

1 $\mathrm{F}$
2 $\frac{F}{2}$
3 $\sqrt{2} \mathrm{~F}$
4 $2 \mathrm{~F}$
Moving Charges & Magnetism

153547 A $2 \mathrm{MeV}$ proton is moving perpendicular to a uniform magnetic field of $2.5 \mathrm{~T}$. The force applied on the proton is

1 $3 \times 10^{-10} \mathrm{~N}$
2 $8 \times 10^{-11} \mathrm{~N}$
3 $3 \times 10^{-11} \mathrm{~N}$
4 $8 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153548 Two infinitely long straight wires $A$ and $B$, each carrying current $I$ are placed on $x$ and $y$ axis, respectively. The current in wires $A$ and $B$ flow along- $\hat{i}$ and $\hat{j}$ directions respectively. The force on a charged particle having charge $q$, moving from position, $r=d(\hat{\mathbf{i}}+\hat{\mathbf{j}})$ with velocity $\mathbf{v}=\mathbf{v} \hat{i}$ is

1 $\frac{\mu_{0} \operatorname{Iqv}}{2 \pi \mathrm{d}} \hat{\mathrm{j}}$
2 $\frac{\mu_{0} \operatorname{Iqv}}{\pi \mathrm{d}} \hat{\mathrm{j}}$
3 $\frac{\mu_{0} \mathrm{Iqv}}{\sqrt{2} \pi \mathrm{d}} \hat{\mathrm{k}}$
4 0
Moving Charges & Magnetism

153549 A charged particle of mass $0.003 \mathrm{~g}$ is held stationary is space by placing it in a downward direction of electric field of $6 \times 10^{4} \mathrm{~N} / \mathrm{C}$. Then the magnitude of the charge is

1 $5 \times 10^{-4} \mathrm{C}$
2 $5 \times 10^{-10} \mathrm{C}$
3 $-18 \times 10^{-6} \mathrm{C}$
4 $-5 \times 10^{-9} \mathrm{C}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153546 An electron accelerated through a potential difference $V$, passes through a uniform transverse magnetic field and experiences a force $F$. If the accelerating potential is increased to $2 \mathrm{~V}$, the electron in the same magnetic field will experience a force.

1 $\mathrm{F}$
2 $\frac{F}{2}$
3 $\sqrt{2} \mathrm{~F}$
4 $2 \mathrm{~F}$
Moving Charges & Magnetism

153547 A $2 \mathrm{MeV}$ proton is moving perpendicular to a uniform magnetic field of $2.5 \mathrm{~T}$. The force applied on the proton is

1 $3 \times 10^{-10} \mathrm{~N}$
2 $8 \times 10^{-11} \mathrm{~N}$
3 $3 \times 10^{-11} \mathrm{~N}$
4 $8 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153548 Two infinitely long straight wires $A$ and $B$, each carrying current $I$ are placed on $x$ and $y$ axis, respectively. The current in wires $A$ and $B$ flow along- $\hat{i}$ and $\hat{j}$ directions respectively. The force on a charged particle having charge $q$, moving from position, $r=d(\hat{\mathbf{i}}+\hat{\mathbf{j}})$ with velocity $\mathbf{v}=\mathbf{v} \hat{i}$ is

1 $\frac{\mu_{0} \operatorname{Iqv}}{2 \pi \mathrm{d}} \hat{\mathrm{j}}$
2 $\frac{\mu_{0} \operatorname{Iqv}}{\pi \mathrm{d}} \hat{\mathrm{j}}$
3 $\frac{\mu_{0} \mathrm{Iqv}}{\sqrt{2} \pi \mathrm{d}} \hat{\mathrm{k}}$
4 0
Moving Charges & Magnetism

153549 A charged particle of mass $0.003 \mathrm{~g}$ is held stationary is space by placing it in a downward direction of electric field of $6 \times 10^{4} \mathrm{~N} / \mathrm{C}$. Then the magnitude of the charge is

1 $5 \times 10^{-4} \mathrm{C}$
2 $5 \times 10^{-10} \mathrm{C}$
3 $-18 \times 10^{-6} \mathrm{C}$
4 $-5 \times 10^{-9} \mathrm{C}$
Moving Charges & Magnetism

153546 An electron accelerated through a potential difference $V$, passes through a uniform transverse magnetic field and experiences a force $F$. If the accelerating potential is increased to $2 \mathrm{~V}$, the electron in the same magnetic field will experience a force.

1 $\mathrm{F}$
2 $\frac{F}{2}$
3 $\sqrt{2} \mathrm{~F}$
4 $2 \mathrm{~F}$
Moving Charges & Magnetism

153547 A $2 \mathrm{MeV}$ proton is moving perpendicular to a uniform magnetic field of $2.5 \mathrm{~T}$. The force applied on the proton is

1 $3 \times 10^{-10} \mathrm{~N}$
2 $8 \times 10^{-11} \mathrm{~N}$
3 $3 \times 10^{-11} \mathrm{~N}$
4 $8 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153548 Two infinitely long straight wires $A$ and $B$, each carrying current $I$ are placed on $x$ and $y$ axis, respectively. The current in wires $A$ and $B$ flow along- $\hat{i}$ and $\hat{j}$ directions respectively. The force on a charged particle having charge $q$, moving from position, $r=d(\hat{\mathbf{i}}+\hat{\mathbf{j}})$ with velocity $\mathbf{v}=\mathbf{v} \hat{i}$ is

1 $\frac{\mu_{0} \operatorname{Iqv}}{2 \pi \mathrm{d}} \hat{\mathrm{j}}$
2 $\frac{\mu_{0} \operatorname{Iqv}}{\pi \mathrm{d}} \hat{\mathrm{j}}$
3 $\frac{\mu_{0} \mathrm{Iqv}}{\sqrt{2} \pi \mathrm{d}} \hat{\mathrm{k}}$
4 0
Moving Charges & Magnetism

153549 A charged particle of mass $0.003 \mathrm{~g}$ is held stationary is space by placing it in a downward direction of electric field of $6 \times 10^{4} \mathrm{~N} / \mathrm{C}$. Then the magnitude of the charge is

1 $5 \times 10^{-4} \mathrm{C}$
2 $5 \times 10^{-10} \mathrm{C}$
3 $-18 \times 10^{-6} \mathrm{C}$
4 $-5 \times 10^{-9} \mathrm{C}$
Moving Charges & Magnetism

153546 An electron accelerated through a potential difference $V$, passes through a uniform transverse magnetic field and experiences a force $F$. If the accelerating potential is increased to $2 \mathrm{~V}$, the electron in the same magnetic field will experience a force.

1 $\mathrm{F}$
2 $\frac{F}{2}$
3 $\sqrt{2} \mathrm{~F}$
4 $2 \mathrm{~F}$
Moving Charges & Magnetism

153547 A $2 \mathrm{MeV}$ proton is moving perpendicular to a uniform magnetic field of $2.5 \mathrm{~T}$. The force applied on the proton is

1 $3 \times 10^{-10} \mathrm{~N}$
2 $8 \times 10^{-11} \mathrm{~N}$
3 $3 \times 10^{-11} \mathrm{~N}$
4 $8 \times 10^{-12} \mathrm{~N}$
Moving Charges & Magnetism

153548 Two infinitely long straight wires $A$ and $B$, each carrying current $I$ are placed on $x$ and $y$ axis, respectively. The current in wires $A$ and $B$ flow along- $\hat{i}$ and $\hat{j}$ directions respectively. The force on a charged particle having charge $q$, moving from position, $r=d(\hat{\mathbf{i}}+\hat{\mathbf{j}})$ with velocity $\mathbf{v}=\mathbf{v} \hat{i}$ is

1 $\frac{\mu_{0} \operatorname{Iqv}}{2 \pi \mathrm{d}} \hat{\mathrm{j}}$
2 $\frac{\mu_{0} \operatorname{Iqv}}{\pi \mathrm{d}} \hat{\mathrm{j}}$
3 $\frac{\mu_{0} \mathrm{Iqv}}{\sqrt{2} \pi \mathrm{d}} \hat{\mathrm{k}}$
4 0
Moving Charges & Magnetism

153549 A charged particle of mass $0.003 \mathrm{~g}$ is held stationary is space by placing it in a downward direction of electric field of $6 \times 10^{4} \mathrm{~N} / \mathrm{C}$. Then the magnitude of the charge is

1 $5 \times 10^{-4} \mathrm{C}$
2 $5 \times 10^{-10} \mathrm{C}$
3 $-18 \times 10^{-6} \mathrm{C}$
4 $-5 \times 10^{-9} \mathrm{C}$