01. Amperes Law (∞, Length, Solenoid, Toroid)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153461 A solenoid of length $50 \mathrm{~cm}$ and a radius of cross-section $1 \mathrm{~cm}$ has 1000 turns of wire wound over it. If the current carried is $5 \mathrm{~A}$, the magnetic field on its axis, near the centre of the solenoid is approximately (permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T}-\mathrm{m} / \mathrm{A}$ )

1 $0.63 \times 10^{-2} \mathrm{~T}$
2 $1.26 \times 10^{-2} \mathrm{~T}$
3 $2.51 \times 10^{-2} \mathrm{~T}$
4 $6.3 \mathrm{~T}$
Moving Charges & Magnetism

153462 A coil of 100 turns, $5 \mathrm{~cm}^{2}$ area is placed in an external magnetic field of $0.2 \mathrm{~T}$ in such a way that it makes an angle of $30^{\circ}$ with field direction. The magnetic flux through the coil will be

1 $5 \times 10^{-3} \mathrm{~Wb}$
2 $3 \times 10^{-5} \mathrm{~Wb}$
3 $5 \times 10^{3} \mathrm{~Wb}$
4 $3 \times 10^{5} \mathrm{~Wb}$
Moving Charges & Magnetism

153463 How much time will a heater take to increase the temperature of $100 \mathrm{~g}$ water by $50^{\circ} \mathrm{C}$, if the resistance of heating coil is $484 \Omega$ and the supply voltage is $220 \mathrm{~V}$ AC?

1 $120 \mathrm{~s}$
2 $210 \mathrm{~s}$
3 $240 \mathrm{~s}$
4 $220 \mathrm{~s}$
Moving Charges & Magnetism

153464 A long solenoid has 200 turns per $\mathrm{cm}$ and carries a current $I$. The magnetic field at its centre is $6.28 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$. Another long solenoid has 100 turns per $\mathrm{cm}$ and it carries a current $I / 3$. The value of the magnetic field at its centre is

1 $1.05 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$
2 $1.05 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$
3 $1.05 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$
4 $1.05 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$
Moving Charges & Magnetism

153461 A solenoid of length $50 \mathrm{~cm}$ and a radius of cross-section $1 \mathrm{~cm}$ has 1000 turns of wire wound over it. If the current carried is $5 \mathrm{~A}$, the magnetic field on its axis, near the centre of the solenoid is approximately (permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T}-\mathrm{m} / \mathrm{A}$ )

1 $0.63 \times 10^{-2} \mathrm{~T}$
2 $1.26 \times 10^{-2} \mathrm{~T}$
3 $2.51 \times 10^{-2} \mathrm{~T}$
4 $6.3 \mathrm{~T}$
Moving Charges & Magnetism

153462 A coil of 100 turns, $5 \mathrm{~cm}^{2}$ area is placed in an external magnetic field of $0.2 \mathrm{~T}$ in such a way that it makes an angle of $30^{\circ}$ with field direction. The magnetic flux through the coil will be

1 $5 \times 10^{-3} \mathrm{~Wb}$
2 $3 \times 10^{-5} \mathrm{~Wb}$
3 $5 \times 10^{3} \mathrm{~Wb}$
4 $3 \times 10^{5} \mathrm{~Wb}$
Moving Charges & Magnetism

153463 How much time will a heater take to increase the temperature of $100 \mathrm{~g}$ water by $50^{\circ} \mathrm{C}$, if the resistance of heating coil is $484 \Omega$ and the supply voltage is $220 \mathrm{~V}$ AC?

1 $120 \mathrm{~s}$
2 $210 \mathrm{~s}$
3 $240 \mathrm{~s}$
4 $220 \mathrm{~s}$
Moving Charges & Magnetism

153464 A long solenoid has 200 turns per $\mathrm{cm}$ and carries a current $I$. The magnetic field at its centre is $6.28 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$. Another long solenoid has 100 turns per $\mathrm{cm}$ and it carries a current $I / 3$. The value of the magnetic field at its centre is

1 $1.05 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$
2 $1.05 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$
3 $1.05 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$
4 $1.05 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$
Moving Charges & Magnetism

153461 A solenoid of length $50 \mathrm{~cm}$ and a radius of cross-section $1 \mathrm{~cm}$ has 1000 turns of wire wound over it. If the current carried is $5 \mathrm{~A}$, the magnetic field on its axis, near the centre of the solenoid is approximately (permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T}-\mathrm{m} / \mathrm{A}$ )

1 $0.63 \times 10^{-2} \mathrm{~T}$
2 $1.26 \times 10^{-2} \mathrm{~T}$
3 $2.51 \times 10^{-2} \mathrm{~T}$
4 $6.3 \mathrm{~T}$
Moving Charges & Magnetism

153462 A coil of 100 turns, $5 \mathrm{~cm}^{2}$ area is placed in an external magnetic field of $0.2 \mathrm{~T}$ in such a way that it makes an angle of $30^{\circ}$ with field direction. The magnetic flux through the coil will be

1 $5 \times 10^{-3} \mathrm{~Wb}$
2 $3 \times 10^{-5} \mathrm{~Wb}$
3 $5 \times 10^{3} \mathrm{~Wb}$
4 $3 \times 10^{5} \mathrm{~Wb}$
Moving Charges & Magnetism

153463 How much time will a heater take to increase the temperature of $100 \mathrm{~g}$ water by $50^{\circ} \mathrm{C}$, if the resistance of heating coil is $484 \Omega$ and the supply voltage is $220 \mathrm{~V}$ AC?

1 $120 \mathrm{~s}$
2 $210 \mathrm{~s}$
3 $240 \mathrm{~s}$
4 $220 \mathrm{~s}$
Moving Charges & Magnetism

153464 A long solenoid has 200 turns per $\mathrm{cm}$ and carries a current $I$. The magnetic field at its centre is $6.28 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$. Another long solenoid has 100 turns per $\mathrm{cm}$ and it carries a current $I / 3$. The value of the magnetic field at its centre is

1 $1.05 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$
2 $1.05 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$
3 $1.05 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$
4 $1.05 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153461 A solenoid of length $50 \mathrm{~cm}$ and a radius of cross-section $1 \mathrm{~cm}$ has 1000 turns of wire wound over it. If the current carried is $5 \mathrm{~A}$, the magnetic field on its axis, near the centre of the solenoid is approximately (permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T}-\mathrm{m} / \mathrm{A}$ )

1 $0.63 \times 10^{-2} \mathrm{~T}$
2 $1.26 \times 10^{-2} \mathrm{~T}$
3 $2.51 \times 10^{-2} \mathrm{~T}$
4 $6.3 \mathrm{~T}$
Moving Charges & Magnetism

153462 A coil of 100 turns, $5 \mathrm{~cm}^{2}$ area is placed in an external magnetic field of $0.2 \mathrm{~T}$ in such a way that it makes an angle of $30^{\circ}$ with field direction. The magnetic flux through the coil will be

1 $5 \times 10^{-3} \mathrm{~Wb}$
2 $3 \times 10^{-5} \mathrm{~Wb}$
3 $5 \times 10^{3} \mathrm{~Wb}$
4 $3 \times 10^{5} \mathrm{~Wb}$
Moving Charges & Magnetism

153463 How much time will a heater take to increase the temperature of $100 \mathrm{~g}$ water by $50^{\circ} \mathrm{C}$, if the resistance of heating coil is $484 \Omega$ and the supply voltage is $220 \mathrm{~V}$ AC?

1 $120 \mathrm{~s}$
2 $210 \mathrm{~s}$
3 $240 \mathrm{~s}$
4 $220 \mathrm{~s}$
Moving Charges & Magnetism

153464 A long solenoid has 200 turns per $\mathrm{cm}$ and carries a current $I$. The magnetic field at its centre is $6.28 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$. Another long solenoid has 100 turns per $\mathrm{cm}$ and it carries a current $I / 3$. The value of the magnetic field at its centre is

1 $1.05 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$
2 $1.05 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$
3 $1.05 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$
4 $1.05 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$