01. Amperes Law (∞, Length, Solenoid, Toroid)
Moving Charges & Magnetism

153450 A toroid has 500 turns per meter length. If it carries a current of $2 \mathrm{~A}$, the magnetic energy density inside the toroid is :

1 $0.628 \mathrm{~J} / \mathrm{m}^{3}$
2 $0.314 \mathrm{~J} / \mathrm{m}^{3}$
3 $6.28 \mathrm{~J} / \mathrm{m}^{3}$
4 $3.14 \mathrm{~J} / \mathrm{m}^{3}$
Moving Charges & Magnetism

153452 A toroid of 500 turn and radius $40 \mathrm{~cm}$ has area of cross section $10 \mathrm{~cm}^{2}$. Find in the inductance.

1 $125 \mu \mathrm{H}$
2 $250 \mu \mathrm{H}$
3 $0.00248 \mathrm{H}$
4 zero
Moving Charges & Magnetism

153453 A toroid having diameter $2.5 \mathrm{~m}$, number of turns 400, current $=2 \mathrm{~A}$ and magnetic field $=10$ $T$ what will be induced magnetic field? (in amp/m)

1 $\frac{10^{5}}{4 \pi}$
2 $\frac{10^{8}}{4 \pi}$
3 $\frac{10^{8}}{2 \pi}$
4 $\frac{10^{2}}{2 \pi}$
Moving Charges & Magnetism

153454 There are 50 turns per $\mathrm{cm}$ length in a very long solenoid. It carries a current of $2.5 \mathrm{~A}$. The magnetic field at its centre on the axis is T.

1 $5 \pi \times 10^{-3}$
2 $6 \pi \times 10^{-3}$
3 $2 \pi \times 10^{-3}$
4 $4 \pi \times 10^{-3}$
Moving Charges & Magnetism

153455 A long solenoid with 2000 turns per meter has a small loop of radius $3 \mathrm{~cm}$ placed inside the solenoid normal to its axis. If the current through the solenoid increases steadily from 1.5 A to $5.5 \mathrm{~A}$ in $\frac{\pi^{2}}{100} \mathrm{~s}$, the induced emf in the loop is

1 $0.144 \mathrm{mV}$
2 $0.288 \mathrm{mV}$
3 $0.072 \mathrm{mV}$
4 $0.316 \mathrm{mV}$
Moving Charges & Magnetism

153450 A toroid has 500 turns per meter length. If it carries a current of $2 \mathrm{~A}$, the magnetic energy density inside the toroid is :

1 $0.628 \mathrm{~J} / \mathrm{m}^{3}$
2 $0.314 \mathrm{~J} / \mathrm{m}^{3}$
3 $6.28 \mathrm{~J} / \mathrm{m}^{3}$
4 $3.14 \mathrm{~J} / \mathrm{m}^{3}$
Moving Charges & Magnetism

153452 A toroid of 500 turn and radius $40 \mathrm{~cm}$ has area of cross section $10 \mathrm{~cm}^{2}$. Find in the inductance.

1 $125 \mu \mathrm{H}$
2 $250 \mu \mathrm{H}$
3 $0.00248 \mathrm{H}$
4 zero
Moving Charges & Magnetism

153453 A toroid having diameter $2.5 \mathrm{~m}$, number of turns 400, current $=2 \mathrm{~A}$ and magnetic field $=10$ $T$ what will be induced magnetic field? (in amp/m)

1 $\frac{10^{5}}{4 \pi}$
2 $\frac{10^{8}}{4 \pi}$
3 $\frac{10^{8}}{2 \pi}$
4 $\frac{10^{2}}{2 \pi}$
Moving Charges & Magnetism

153454 There are 50 turns per $\mathrm{cm}$ length in a very long solenoid. It carries a current of $2.5 \mathrm{~A}$. The magnetic field at its centre on the axis is T.

1 $5 \pi \times 10^{-3}$
2 $6 \pi \times 10^{-3}$
3 $2 \pi \times 10^{-3}$
4 $4 \pi \times 10^{-3}$
Moving Charges & Magnetism

153455 A long solenoid with 2000 turns per meter has a small loop of radius $3 \mathrm{~cm}$ placed inside the solenoid normal to its axis. If the current through the solenoid increases steadily from 1.5 A to $5.5 \mathrm{~A}$ in $\frac{\pi^{2}}{100} \mathrm{~s}$, the induced emf in the loop is

1 $0.144 \mathrm{mV}$
2 $0.288 \mathrm{mV}$
3 $0.072 \mathrm{mV}$
4 $0.316 \mathrm{mV}$
Moving Charges & Magnetism

153450 A toroid has 500 turns per meter length. If it carries a current of $2 \mathrm{~A}$, the magnetic energy density inside the toroid is :

1 $0.628 \mathrm{~J} / \mathrm{m}^{3}$
2 $0.314 \mathrm{~J} / \mathrm{m}^{3}$
3 $6.28 \mathrm{~J} / \mathrm{m}^{3}$
4 $3.14 \mathrm{~J} / \mathrm{m}^{3}$
Moving Charges & Magnetism

153452 A toroid of 500 turn and radius $40 \mathrm{~cm}$ has area of cross section $10 \mathrm{~cm}^{2}$. Find in the inductance.

1 $125 \mu \mathrm{H}$
2 $250 \mu \mathrm{H}$
3 $0.00248 \mathrm{H}$
4 zero
Moving Charges & Magnetism

153453 A toroid having diameter $2.5 \mathrm{~m}$, number of turns 400, current $=2 \mathrm{~A}$ and magnetic field $=10$ $T$ what will be induced magnetic field? (in amp/m)

1 $\frac{10^{5}}{4 \pi}$
2 $\frac{10^{8}}{4 \pi}$
3 $\frac{10^{8}}{2 \pi}$
4 $\frac{10^{2}}{2 \pi}$
Moving Charges & Magnetism

153454 There are 50 turns per $\mathrm{cm}$ length in a very long solenoid. It carries a current of $2.5 \mathrm{~A}$. The magnetic field at its centre on the axis is T.

1 $5 \pi \times 10^{-3}$
2 $6 \pi \times 10^{-3}$
3 $2 \pi \times 10^{-3}$
4 $4 \pi \times 10^{-3}$
Moving Charges & Magnetism

153455 A long solenoid with 2000 turns per meter has a small loop of radius $3 \mathrm{~cm}$ placed inside the solenoid normal to its axis. If the current through the solenoid increases steadily from 1.5 A to $5.5 \mathrm{~A}$ in $\frac{\pi^{2}}{100} \mathrm{~s}$, the induced emf in the loop is

1 $0.144 \mathrm{mV}$
2 $0.288 \mathrm{mV}$
3 $0.072 \mathrm{mV}$
4 $0.316 \mathrm{mV}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153450 A toroid has 500 turns per meter length. If it carries a current of $2 \mathrm{~A}$, the magnetic energy density inside the toroid is :

1 $0.628 \mathrm{~J} / \mathrm{m}^{3}$
2 $0.314 \mathrm{~J} / \mathrm{m}^{3}$
3 $6.28 \mathrm{~J} / \mathrm{m}^{3}$
4 $3.14 \mathrm{~J} / \mathrm{m}^{3}$
Moving Charges & Magnetism

153452 A toroid of 500 turn and radius $40 \mathrm{~cm}$ has area of cross section $10 \mathrm{~cm}^{2}$. Find in the inductance.

1 $125 \mu \mathrm{H}$
2 $250 \mu \mathrm{H}$
3 $0.00248 \mathrm{H}$
4 zero
Moving Charges & Magnetism

153453 A toroid having diameter $2.5 \mathrm{~m}$, number of turns 400, current $=2 \mathrm{~A}$ and magnetic field $=10$ $T$ what will be induced magnetic field? (in amp/m)

1 $\frac{10^{5}}{4 \pi}$
2 $\frac{10^{8}}{4 \pi}$
3 $\frac{10^{8}}{2 \pi}$
4 $\frac{10^{2}}{2 \pi}$
Moving Charges & Magnetism

153454 There are 50 turns per $\mathrm{cm}$ length in a very long solenoid. It carries a current of $2.5 \mathrm{~A}$. The magnetic field at its centre on the axis is T.

1 $5 \pi \times 10^{-3}$
2 $6 \pi \times 10^{-3}$
3 $2 \pi \times 10^{-3}$
4 $4 \pi \times 10^{-3}$
Moving Charges & Magnetism

153455 A long solenoid with 2000 turns per meter has a small loop of radius $3 \mathrm{~cm}$ placed inside the solenoid normal to its axis. If the current through the solenoid increases steadily from 1.5 A to $5.5 \mathrm{~A}$ in $\frac{\pi^{2}}{100} \mathrm{~s}$, the induced emf in the loop is

1 $0.144 \mathrm{mV}$
2 $0.288 \mathrm{mV}$
3 $0.072 \mathrm{mV}$
4 $0.316 \mathrm{mV}$
Moving Charges & Magnetism

153450 A toroid has 500 turns per meter length. If it carries a current of $2 \mathrm{~A}$, the magnetic energy density inside the toroid is :

1 $0.628 \mathrm{~J} / \mathrm{m}^{3}$
2 $0.314 \mathrm{~J} / \mathrm{m}^{3}$
3 $6.28 \mathrm{~J} / \mathrm{m}^{3}$
4 $3.14 \mathrm{~J} / \mathrm{m}^{3}$
Moving Charges & Magnetism

153452 A toroid of 500 turn and radius $40 \mathrm{~cm}$ has area of cross section $10 \mathrm{~cm}^{2}$. Find in the inductance.

1 $125 \mu \mathrm{H}$
2 $250 \mu \mathrm{H}$
3 $0.00248 \mathrm{H}$
4 zero
Moving Charges & Magnetism

153453 A toroid having diameter $2.5 \mathrm{~m}$, number of turns 400, current $=2 \mathrm{~A}$ and magnetic field $=10$ $T$ what will be induced magnetic field? (in amp/m)

1 $\frac{10^{5}}{4 \pi}$
2 $\frac{10^{8}}{4 \pi}$
3 $\frac{10^{8}}{2 \pi}$
4 $\frac{10^{2}}{2 \pi}$
Moving Charges & Magnetism

153454 There are 50 turns per $\mathrm{cm}$ length in a very long solenoid. It carries a current of $2.5 \mathrm{~A}$. The magnetic field at its centre on the axis is T.

1 $5 \pi \times 10^{-3}$
2 $6 \pi \times 10^{-3}$
3 $2 \pi \times 10^{-3}$
4 $4 \pi \times 10^{-3}$
Moving Charges & Magnetism

153455 A long solenoid with 2000 turns per meter has a small loop of radius $3 \mathrm{~cm}$ placed inside the solenoid normal to its axis. If the current through the solenoid increases steadily from 1.5 A to $5.5 \mathrm{~A}$ in $\frac{\pi^{2}}{100} \mathrm{~s}$, the induced emf in the loop is

1 $0.144 \mathrm{mV}$
2 $0.288 \mathrm{mV}$
3 $0.072 \mathrm{mV}$
4 $0.316 \mathrm{mV}$