01. Amperes Law (∞, Length, Solenoid, Toroid)
Moving Charges & Magnetism

153419 A solenoid has a core of a material with relative permeability 400 . The winding $s$ of the solenoid are insulated from the core and carry a current of $1 \mathrm{~A}$. If the number of turns is $\mathbf{1 0 0 0}$ per meter, find magnetic field (B)_ T. $\left(\mu_{0}=\right.$ $4 \pi \times 10^{-7} \mathrm{SI}$ )

1 $1.6 \pi \times 10^{+2}$
2 $16 \pi \times 10^{2}$
3 $16 \pi \times 10^{-2}$
4 $0.16 \pi \times 10^{-2}$
Moving Charges & Magnetism

153422 A closely wound solenoid of length $1 \mathrm{~m}$ has 5 layers of 500 turns each. If the magnitude of magnetic field inside the solenoid near its centre is $4.4 \mathrm{mT}$, the current carried is-

1 $1.4 \mathrm{~A}$
2 $1.5 \mathrm{~A}$
3 $1.6 \mathrm{~A}$
4 $1.8 \mathrm{~A}$
Moving Charges & Magnetism

153423 The magnetic field at the center of current carrying circular loop is $B_{1}$. The magnetic field at a distance of $\sqrt{3}$ times radius of the given circular loop from the center on its axis is $B_{2}$. The value of $B_{1} / B_{2}$ will be

1 $9: 4$
2 $12: \sqrt{5}$
3 $8: 1$
4 $5: \sqrt{3}$
Moving Charges & Magnetism

153424 A long solenoid has 70 turns/cm and carries current I. An electron moves within the solenoid in a circle of radius $2.5 \mathrm{~cm}$ perpendicular to the solenoid axis. If the speed of the electron is $4.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ then the current $I$ in the solenoid is
(Take $\mu_{0}=4 \pi \times 10^{-7}$ SI unit, mass of electron $=$ $9 \times 10^{-31} \mathrm{Kg}$, charge on electron $=1.6 \times 10^{-19} \mathrm{C}$ )

1 $98.5 \mathrm{~mA}$
2 $112.5 \mathrm{~mA}$
3 $125 \mathrm{~mA}$
4 $175.0 \mathrm{~mA}$
Moving Charges & Magnetism

153419 A solenoid has a core of a material with relative permeability 400 . The winding $s$ of the solenoid are insulated from the core and carry a current of $1 \mathrm{~A}$. If the number of turns is $\mathbf{1 0 0 0}$ per meter, find magnetic field (B)_ T. $\left(\mu_{0}=\right.$ $4 \pi \times 10^{-7} \mathrm{SI}$ )

1 $1.6 \pi \times 10^{+2}$
2 $16 \pi \times 10^{2}$
3 $16 \pi \times 10^{-2}$
4 $0.16 \pi \times 10^{-2}$
Moving Charges & Magnetism

153422 A closely wound solenoid of length $1 \mathrm{~m}$ has 5 layers of 500 turns each. If the magnitude of magnetic field inside the solenoid near its centre is $4.4 \mathrm{mT}$, the current carried is-

1 $1.4 \mathrm{~A}$
2 $1.5 \mathrm{~A}$
3 $1.6 \mathrm{~A}$
4 $1.8 \mathrm{~A}$
Moving Charges & Magnetism

153423 The magnetic field at the center of current carrying circular loop is $B_{1}$. The magnetic field at a distance of $\sqrt{3}$ times radius of the given circular loop from the center on its axis is $B_{2}$. The value of $B_{1} / B_{2}$ will be

1 $9: 4$
2 $12: \sqrt{5}$
3 $8: 1$
4 $5: \sqrt{3}$
Moving Charges & Magnetism

153424 A long solenoid has 70 turns/cm and carries current I. An electron moves within the solenoid in a circle of radius $2.5 \mathrm{~cm}$ perpendicular to the solenoid axis. If the speed of the electron is $4.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ then the current $I$ in the solenoid is
(Take $\mu_{0}=4 \pi \times 10^{-7}$ SI unit, mass of electron $=$ $9 \times 10^{-31} \mathrm{Kg}$, charge on electron $=1.6 \times 10^{-19} \mathrm{C}$ )

1 $98.5 \mathrm{~mA}$
2 $112.5 \mathrm{~mA}$
3 $125 \mathrm{~mA}$
4 $175.0 \mathrm{~mA}$
Moving Charges & Magnetism

153419 A solenoid has a core of a material with relative permeability 400 . The winding $s$ of the solenoid are insulated from the core and carry a current of $1 \mathrm{~A}$. If the number of turns is $\mathbf{1 0 0 0}$ per meter, find magnetic field (B)_ T. $\left(\mu_{0}=\right.$ $4 \pi \times 10^{-7} \mathrm{SI}$ )

1 $1.6 \pi \times 10^{+2}$
2 $16 \pi \times 10^{2}$
3 $16 \pi \times 10^{-2}$
4 $0.16 \pi \times 10^{-2}$
Moving Charges & Magnetism

153422 A closely wound solenoid of length $1 \mathrm{~m}$ has 5 layers of 500 turns each. If the magnitude of magnetic field inside the solenoid near its centre is $4.4 \mathrm{mT}$, the current carried is-

1 $1.4 \mathrm{~A}$
2 $1.5 \mathrm{~A}$
3 $1.6 \mathrm{~A}$
4 $1.8 \mathrm{~A}$
Moving Charges & Magnetism

153423 The magnetic field at the center of current carrying circular loop is $B_{1}$. The magnetic field at a distance of $\sqrt{3}$ times radius of the given circular loop from the center on its axis is $B_{2}$. The value of $B_{1} / B_{2}$ will be

1 $9: 4$
2 $12: \sqrt{5}$
3 $8: 1$
4 $5: \sqrt{3}$
Moving Charges & Magnetism

153424 A long solenoid has 70 turns/cm and carries current I. An electron moves within the solenoid in a circle of radius $2.5 \mathrm{~cm}$ perpendicular to the solenoid axis. If the speed of the electron is $4.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ then the current $I$ in the solenoid is
(Take $\mu_{0}=4 \pi \times 10^{-7}$ SI unit, mass of electron $=$ $9 \times 10^{-31} \mathrm{Kg}$, charge on electron $=1.6 \times 10^{-19} \mathrm{C}$ )

1 $98.5 \mathrm{~mA}$
2 $112.5 \mathrm{~mA}$
3 $125 \mathrm{~mA}$
4 $175.0 \mathrm{~mA}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153419 A solenoid has a core of a material with relative permeability 400 . The winding $s$ of the solenoid are insulated from the core and carry a current of $1 \mathrm{~A}$. If the number of turns is $\mathbf{1 0 0 0}$ per meter, find magnetic field (B)_ T. $\left(\mu_{0}=\right.$ $4 \pi \times 10^{-7} \mathrm{SI}$ )

1 $1.6 \pi \times 10^{+2}$
2 $16 \pi \times 10^{2}$
3 $16 \pi \times 10^{-2}$
4 $0.16 \pi \times 10^{-2}$
Moving Charges & Magnetism

153422 A closely wound solenoid of length $1 \mathrm{~m}$ has 5 layers of 500 turns each. If the magnitude of magnetic field inside the solenoid near its centre is $4.4 \mathrm{mT}$, the current carried is-

1 $1.4 \mathrm{~A}$
2 $1.5 \mathrm{~A}$
3 $1.6 \mathrm{~A}$
4 $1.8 \mathrm{~A}$
Moving Charges & Magnetism

153423 The magnetic field at the center of current carrying circular loop is $B_{1}$. The magnetic field at a distance of $\sqrt{3}$ times radius of the given circular loop from the center on its axis is $B_{2}$. The value of $B_{1} / B_{2}$ will be

1 $9: 4$
2 $12: \sqrt{5}$
3 $8: 1$
4 $5: \sqrt{3}$
Moving Charges & Magnetism

153424 A long solenoid has 70 turns/cm and carries current I. An electron moves within the solenoid in a circle of radius $2.5 \mathrm{~cm}$ perpendicular to the solenoid axis. If the speed of the electron is $4.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ then the current $I$ in the solenoid is
(Take $\mu_{0}=4 \pi \times 10^{-7}$ SI unit, mass of electron $=$ $9 \times 10^{-31} \mathrm{Kg}$, charge on electron $=1.6 \times 10^{-19} \mathrm{C}$ )

1 $98.5 \mathrm{~mA}$
2 $112.5 \mathrm{~mA}$
3 $125 \mathrm{~mA}$
4 $175.0 \mathrm{~mA}$