01. Amperes Law (∞, Length, Solenoid, Toroid)
Moving Charges & Magnetism

153415 The rod with circular cross-section area $2 \mathrm{~cm}^{2}$ and length $40 \mathrm{~cm}$ is wound uniformly with 400 turns of an insulated wire. If a current of $0.4 \mathrm{~A}$ flows in the wire windings, the total magnetic flux produced inside windings is $4 \pi \times 10^{-6} \mathrm{~Wb}$. The relative permeability of the rod is
(Given: Permeability of vacuum $\mu_{0}=4 \pi \times 10^{-7}$ $\mathbf{N A}^{-2}$ )

1 125
2 12.5
3 $\frac{5}{16}$
4 $\frac{32}{5}$
Moving Charges & Magnetism

153416 A particle of mass $2.2 \times 10^{-30} \mathrm{~kg}$ and charge $1.6 \times 10^{-19} \mathrm{C}$ is moving at a speed of $10 \mathrm{~km} \mathrm{~S}^{-1}$ in circular path of radius $2.8 \mathrm{~cm}$ inside a solenoid. The solenoid has $25 \frac{\text { turns }}{\mathrm{cm}}$ and its magnetic field is perpendicular to the plane of the particle's path. The current in the solenoid is (Take $\mu=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$ )

1 $1.25 \mathrm{~mA}$
2 $10.20 \mathrm{~mA}$
3 $2.50 \mathrm{~mA}$
4 $1.56 \mathrm{~mA}$
Moving Charges & Magnetism

153417 A long solenoid carrying a current produces a magnetic field $B$ along its axis. If the current is doubled and the number of turns per $\mathrm{cm}$ is halved, the new value of magnetic field will be equal to

1 $\mathrm{B}$
2 $2 \mathrm{~B}$
3 $4 \mathrm{~B}$
4 $\frac{B}{2}$
Moving Charges & Magnetism

153418 The magnetic field inside a solenoid of crosssection area $4.4 \mathrm{~cm}^{2}$, length $1.0 \mathrm{~m}$, is $2 \times 10^{-4} \mathrm{~T}$, The magnetic energy stored in the solenoid is

1 $7 \mu \mathrm{J}$
2 $12 \mu \mathrm{J}$
3 $5 \mu \mathrm{J}$
4 $8 \mu \mathrm{J}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153415 The rod with circular cross-section area $2 \mathrm{~cm}^{2}$ and length $40 \mathrm{~cm}$ is wound uniformly with 400 turns of an insulated wire. If a current of $0.4 \mathrm{~A}$ flows in the wire windings, the total magnetic flux produced inside windings is $4 \pi \times 10^{-6} \mathrm{~Wb}$. The relative permeability of the rod is
(Given: Permeability of vacuum $\mu_{0}=4 \pi \times 10^{-7}$ $\mathbf{N A}^{-2}$ )

1 125
2 12.5
3 $\frac{5}{16}$
4 $\frac{32}{5}$
Moving Charges & Magnetism

153416 A particle of mass $2.2 \times 10^{-30} \mathrm{~kg}$ and charge $1.6 \times 10^{-19} \mathrm{C}$ is moving at a speed of $10 \mathrm{~km} \mathrm{~S}^{-1}$ in circular path of radius $2.8 \mathrm{~cm}$ inside a solenoid. The solenoid has $25 \frac{\text { turns }}{\mathrm{cm}}$ and its magnetic field is perpendicular to the plane of the particle's path. The current in the solenoid is (Take $\mu=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$ )

1 $1.25 \mathrm{~mA}$
2 $10.20 \mathrm{~mA}$
3 $2.50 \mathrm{~mA}$
4 $1.56 \mathrm{~mA}$
Moving Charges & Magnetism

153417 A long solenoid carrying a current produces a magnetic field $B$ along its axis. If the current is doubled and the number of turns per $\mathrm{cm}$ is halved, the new value of magnetic field will be equal to

1 $\mathrm{B}$
2 $2 \mathrm{~B}$
3 $4 \mathrm{~B}$
4 $\frac{B}{2}$
Moving Charges & Magnetism

153418 The magnetic field inside a solenoid of crosssection area $4.4 \mathrm{~cm}^{2}$, length $1.0 \mathrm{~m}$, is $2 \times 10^{-4} \mathrm{~T}$, The magnetic energy stored in the solenoid is

1 $7 \mu \mathrm{J}$
2 $12 \mu \mathrm{J}$
3 $5 \mu \mathrm{J}$
4 $8 \mu \mathrm{J}$
Moving Charges & Magnetism

153415 The rod with circular cross-section area $2 \mathrm{~cm}^{2}$ and length $40 \mathrm{~cm}$ is wound uniformly with 400 turns of an insulated wire. If a current of $0.4 \mathrm{~A}$ flows in the wire windings, the total magnetic flux produced inside windings is $4 \pi \times 10^{-6} \mathrm{~Wb}$. The relative permeability of the rod is
(Given: Permeability of vacuum $\mu_{0}=4 \pi \times 10^{-7}$ $\mathbf{N A}^{-2}$ )

1 125
2 12.5
3 $\frac{5}{16}$
4 $\frac{32}{5}$
Moving Charges & Magnetism

153416 A particle of mass $2.2 \times 10^{-30} \mathrm{~kg}$ and charge $1.6 \times 10^{-19} \mathrm{C}$ is moving at a speed of $10 \mathrm{~km} \mathrm{~S}^{-1}$ in circular path of radius $2.8 \mathrm{~cm}$ inside a solenoid. The solenoid has $25 \frac{\text { turns }}{\mathrm{cm}}$ and its magnetic field is perpendicular to the plane of the particle's path. The current in the solenoid is (Take $\mu=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$ )

1 $1.25 \mathrm{~mA}$
2 $10.20 \mathrm{~mA}$
3 $2.50 \mathrm{~mA}$
4 $1.56 \mathrm{~mA}$
Moving Charges & Magnetism

153417 A long solenoid carrying a current produces a magnetic field $B$ along its axis. If the current is doubled and the number of turns per $\mathrm{cm}$ is halved, the new value of magnetic field will be equal to

1 $\mathrm{B}$
2 $2 \mathrm{~B}$
3 $4 \mathrm{~B}$
4 $\frac{B}{2}$
Moving Charges & Magnetism

153418 The magnetic field inside a solenoid of crosssection area $4.4 \mathrm{~cm}^{2}$, length $1.0 \mathrm{~m}$, is $2 \times 10^{-4} \mathrm{~T}$, The magnetic energy stored in the solenoid is

1 $7 \mu \mathrm{J}$
2 $12 \mu \mathrm{J}$
3 $5 \mu \mathrm{J}$
4 $8 \mu \mathrm{J}$
Moving Charges & Magnetism

153415 The rod with circular cross-section area $2 \mathrm{~cm}^{2}$ and length $40 \mathrm{~cm}$ is wound uniformly with 400 turns of an insulated wire. If a current of $0.4 \mathrm{~A}$ flows in the wire windings, the total magnetic flux produced inside windings is $4 \pi \times 10^{-6} \mathrm{~Wb}$. The relative permeability of the rod is
(Given: Permeability of vacuum $\mu_{0}=4 \pi \times 10^{-7}$ $\mathbf{N A}^{-2}$ )

1 125
2 12.5
3 $\frac{5}{16}$
4 $\frac{32}{5}$
Moving Charges & Magnetism

153416 A particle of mass $2.2 \times 10^{-30} \mathrm{~kg}$ and charge $1.6 \times 10^{-19} \mathrm{C}$ is moving at a speed of $10 \mathrm{~km} \mathrm{~S}^{-1}$ in circular path of radius $2.8 \mathrm{~cm}$ inside a solenoid. The solenoid has $25 \frac{\text { turns }}{\mathrm{cm}}$ and its magnetic field is perpendicular to the plane of the particle's path. The current in the solenoid is (Take $\mu=4 \pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$ )

1 $1.25 \mathrm{~mA}$
2 $10.20 \mathrm{~mA}$
3 $2.50 \mathrm{~mA}$
4 $1.56 \mathrm{~mA}$
Moving Charges & Magnetism

153417 A long solenoid carrying a current produces a magnetic field $B$ along its axis. If the current is doubled and the number of turns per $\mathrm{cm}$ is halved, the new value of magnetic field will be equal to

1 $\mathrm{B}$
2 $2 \mathrm{~B}$
3 $4 \mathrm{~B}$
4 $\frac{B}{2}$
Moving Charges & Magnetism

153418 The magnetic field inside a solenoid of crosssection area $4.4 \mathrm{~cm}^{2}$, length $1.0 \mathrm{~m}$, is $2 \times 10^{-4} \mathrm{~T}$, The magnetic energy stored in the solenoid is

1 $7 \mu \mathrm{J}$
2 $12 \mu \mathrm{J}$
3 $5 \mu \mathrm{J}$
4 $8 \mu \mathrm{J}$