01. Amperes Law (∞, Length, Solenoid, Toroid)
Moving Charges & Magnetism

153410 The free space inside a current carrying toroid is filled with a material of susceptibility
$2 \times 10^{-2}$. The percentage increase in the value of magnetic field inside the toroid will be

1 $2 \%$
2 $0.2 \%$
3 $0.1 \%$
4 $1 \%$
Moving Charges & Magnetism

153411 A long solenoid is formed by winding 70 turns $\mathrm{cm}^{-1}$. If $2.0 \mathrm{~A}$ current flows, then the magnetic field produced inside the solenoid is $\left.\left(\mu_{0}=4 \pi \times 10^{-7}\right) \mathrm{TmA}^{-1}\right)$

1 $88 \times 10^{-4} \mathrm{~T}$
2 $1232 \times 10^{-4} \mathrm{~T}$
3 $352 \times 10^{-4} \mathrm{~T}$
4 $176 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153412 A long conducting wire having a current $i$ flowing it is bent into a circular coil of $N$ turns. Then it is bent into a circular coil of $n$ turns. The magnetic field is calculated at the centre of coils in both the cases. The ratio of the magnetic field in first case to that of second case is :

1 $\mathrm{n}: \mathrm{N}$
2 $\mathrm{N}: \mathrm{n}$
3 $\mathrm{N}^{2}: \mathrm{n}^{2}$
4 $n^{2}: N^{2}$
Moving Charges & Magnetism

153413 A solenoid of $\mathbf{1 2 0 0}$ turns is wound uniformly in a single layer on a glass tube $2 \mathrm{~m}$ long and $0.2 \mathrm{~m}$ in diameter. The magnetic intensity at the centre of the solenoid when a current of $2 \mathrm{~A}$ flows through it is,

1 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
2 $1.2 \times 10^{3} \mathrm{Am}^{-1}$
3 $1 \mathrm{Am}^{-1}$
4 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
Moving Charges & Magnetism

153414 The magnitude of magnetic induction at mid point $O$ due to current arrangement as shown in Fig will be

1 0
2 $\frac{\mu_{0} l}{\pi \mathrm{a}}$
3 $\frac{\mu_{0} l}{2 \pi \mathrm{a}}$
4 $\frac{\mu_{0} l}{4 \pi \mathrm{a}}$
Moving Charges & Magnetism

153410 The free space inside a current carrying toroid is filled with a material of susceptibility
$2 \times 10^{-2}$. The percentage increase in the value of magnetic field inside the toroid will be

1 $2 \%$
2 $0.2 \%$
3 $0.1 \%$
4 $1 \%$
Moving Charges & Magnetism

153411 A long solenoid is formed by winding 70 turns $\mathrm{cm}^{-1}$. If $2.0 \mathrm{~A}$ current flows, then the magnetic field produced inside the solenoid is $\left.\left(\mu_{0}=4 \pi \times 10^{-7}\right) \mathrm{TmA}^{-1}\right)$

1 $88 \times 10^{-4} \mathrm{~T}$
2 $1232 \times 10^{-4} \mathrm{~T}$
3 $352 \times 10^{-4} \mathrm{~T}$
4 $176 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153412 A long conducting wire having a current $i$ flowing it is bent into a circular coil of $N$ turns. Then it is bent into a circular coil of $n$ turns. The magnetic field is calculated at the centre of coils in both the cases. The ratio of the magnetic field in first case to that of second case is :

1 $\mathrm{n}: \mathrm{N}$
2 $\mathrm{N}: \mathrm{n}$
3 $\mathrm{N}^{2}: \mathrm{n}^{2}$
4 $n^{2}: N^{2}$
Moving Charges & Magnetism

153413 A solenoid of $\mathbf{1 2 0 0}$ turns is wound uniformly in a single layer on a glass tube $2 \mathrm{~m}$ long and $0.2 \mathrm{~m}$ in diameter. The magnetic intensity at the centre of the solenoid when a current of $2 \mathrm{~A}$ flows through it is,

1 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
2 $1.2 \times 10^{3} \mathrm{Am}^{-1}$
3 $1 \mathrm{Am}^{-1}$
4 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
Moving Charges & Magnetism

153414 The magnitude of magnetic induction at mid point $O$ due to current arrangement as shown in Fig will be

1 0
2 $\frac{\mu_{0} l}{\pi \mathrm{a}}$
3 $\frac{\mu_{0} l}{2 \pi \mathrm{a}}$
4 $\frac{\mu_{0} l}{4 \pi \mathrm{a}}$
Moving Charges & Magnetism

153410 The free space inside a current carrying toroid is filled with a material of susceptibility
$2 \times 10^{-2}$. The percentage increase in the value of magnetic field inside the toroid will be

1 $2 \%$
2 $0.2 \%$
3 $0.1 \%$
4 $1 \%$
Moving Charges & Magnetism

153411 A long solenoid is formed by winding 70 turns $\mathrm{cm}^{-1}$. If $2.0 \mathrm{~A}$ current flows, then the magnetic field produced inside the solenoid is $\left.\left(\mu_{0}=4 \pi \times 10^{-7}\right) \mathrm{TmA}^{-1}\right)$

1 $88 \times 10^{-4} \mathrm{~T}$
2 $1232 \times 10^{-4} \mathrm{~T}$
3 $352 \times 10^{-4} \mathrm{~T}$
4 $176 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153412 A long conducting wire having a current $i$ flowing it is bent into a circular coil of $N$ turns. Then it is bent into a circular coil of $n$ turns. The magnetic field is calculated at the centre of coils in both the cases. The ratio of the magnetic field in first case to that of second case is :

1 $\mathrm{n}: \mathrm{N}$
2 $\mathrm{N}: \mathrm{n}$
3 $\mathrm{N}^{2}: \mathrm{n}^{2}$
4 $n^{2}: N^{2}$
Moving Charges & Magnetism

153413 A solenoid of $\mathbf{1 2 0 0}$ turns is wound uniformly in a single layer on a glass tube $2 \mathrm{~m}$ long and $0.2 \mathrm{~m}$ in diameter. The magnetic intensity at the centre of the solenoid when a current of $2 \mathrm{~A}$ flows through it is,

1 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
2 $1.2 \times 10^{3} \mathrm{Am}^{-1}$
3 $1 \mathrm{Am}^{-1}$
4 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
Moving Charges & Magnetism

153414 The magnitude of magnetic induction at mid point $O$ due to current arrangement as shown in Fig will be

1 0
2 $\frac{\mu_{0} l}{\pi \mathrm{a}}$
3 $\frac{\mu_{0} l}{2 \pi \mathrm{a}}$
4 $\frac{\mu_{0} l}{4 \pi \mathrm{a}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153410 The free space inside a current carrying toroid is filled with a material of susceptibility
$2 \times 10^{-2}$. The percentage increase in the value of magnetic field inside the toroid will be

1 $2 \%$
2 $0.2 \%$
3 $0.1 \%$
4 $1 \%$
Moving Charges & Magnetism

153411 A long solenoid is formed by winding 70 turns $\mathrm{cm}^{-1}$. If $2.0 \mathrm{~A}$ current flows, then the magnetic field produced inside the solenoid is $\left.\left(\mu_{0}=4 \pi \times 10^{-7}\right) \mathrm{TmA}^{-1}\right)$

1 $88 \times 10^{-4} \mathrm{~T}$
2 $1232 \times 10^{-4} \mathrm{~T}$
3 $352 \times 10^{-4} \mathrm{~T}$
4 $176 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153412 A long conducting wire having a current $i$ flowing it is bent into a circular coil of $N$ turns. Then it is bent into a circular coil of $n$ turns. The magnetic field is calculated at the centre of coils in both the cases. The ratio of the magnetic field in first case to that of second case is :

1 $\mathrm{n}: \mathrm{N}$
2 $\mathrm{N}: \mathrm{n}$
3 $\mathrm{N}^{2}: \mathrm{n}^{2}$
4 $n^{2}: N^{2}$
Moving Charges & Magnetism

153413 A solenoid of $\mathbf{1 2 0 0}$ turns is wound uniformly in a single layer on a glass tube $2 \mathrm{~m}$ long and $0.2 \mathrm{~m}$ in diameter. The magnetic intensity at the centre of the solenoid when a current of $2 \mathrm{~A}$ flows through it is,

1 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
2 $1.2 \times 10^{3} \mathrm{Am}^{-1}$
3 $1 \mathrm{Am}^{-1}$
4 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
Moving Charges & Magnetism

153414 The magnitude of magnetic induction at mid point $O$ due to current arrangement as shown in Fig will be

1 0
2 $\frac{\mu_{0} l}{\pi \mathrm{a}}$
3 $\frac{\mu_{0} l}{2 \pi \mathrm{a}}$
4 $\frac{\mu_{0} l}{4 \pi \mathrm{a}}$
Moving Charges & Magnetism

153410 The free space inside a current carrying toroid is filled with a material of susceptibility
$2 \times 10^{-2}$. The percentage increase in the value of magnetic field inside the toroid will be

1 $2 \%$
2 $0.2 \%$
3 $0.1 \%$
4 $1 \%$
Moving Charges & Magnetism

153411 A long solenoid is formed by winding 70 turns $\mathrm{cm}^{-1}$. If $2.0 \mathrm{~A}$ current flows, then the magnetic field produced inside the solenoid is $\left.\left(\mu_{0}=4 \pi \times 10^{-7}\right) \mathrm{TmA}^{-1}\right)$

1 $88 \times 10^{-4} \mathrm{~T}$
2 $1232 \times 10^{-4} \mathrm{~T}$
3 $352 \times 10^{-4} \mathrm{~T}$
4 $176 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153412 A long conducting wire having a current $i$ flowing it is bent into a circular coil of $N$ turns. Then it is bent into a circular coil of $n$ turns. The magnetic field is calculated at the centre of coils in both the cases. The ratio of the magnetic field in first case to that of second case is :

1 $\mathrm{n}: \mathrm{N}$
2 $\mathrm{N}: \mathrm{n}$
3 $\mathrm{N}^{2}: \mathrm{n}^{2}$
4 $n^{2}: N^{2}$
Moving Charges & Magnetism

153413 A solenoid of $\mathbf{1 2 0 0}$ turns is wound uniformly in a single layer on a glass tube $2 \mathrm{~m}$ long and $0.2 \mathrm{~m}$ in diameter. The magnetic intensity at the centre of the solenoid when a current of $2 \mathrm{~A}$ flows through it is,

1 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
2 $1.2 \times 10^{3} \mathrm{Am}^{-1}$
3 $1 \mathrm{Am}^{-1}$
4 $2.4 \times 10^{3} \mathrm{Am}^{-1}$
Moving Charges & Magnetism

153414 The magnitude of magnetic induction at mid point $O$ due to current arrangement as shown in Fig will be

1 0
2 $\frac{\mu_{0} l}{\pi \mathrm{a}}$
3 $\frac{\mu_{0} l}{2 \pi \mathrm{a}}$
4 $\frac{\mu_{0} l}{4 \pi \mathrm{a}}$