00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153331 A current of 2 ampere is made to flow through a coil which has only one turn. The magnetic field produced at the centre is $4 \pi \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$. The radius of the coil is :

1 $0.0001 \mathrm{~m}$
2 $0.01 \mathrm{~m}$
3 $0.1 \mathrm{~m}$
4 $0.001 \mathrm{~m}$
Moving Charges & Magnetism

153332 Force $\vec{F}$ experienced by a charger q moving with a velocity $\vec{v}$ in an electric field of strength $\vec{E}$ and a magnetic field of strength $\vec{B}$ is:

1 $\vec{F}=q[\vec{E}+(\vec{v} \times \vec{B})]$
2 $\overrightarrow{\mathrm{F}}=\mathrm{q}[\overrightarrow{\mathrm{B}}+(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{E}})]$
3 $\vec{F}=q[(\vec{v} \cdot \vec{E})+(\vec{B} \times \vec{v})]$
4 $\vec{F}=q[(\vec{v} \times \vec{E})+(\vec{v} \times \vec{B})]$
Moving Charges & Magnetism

153333 An electric current passes through a long straight wire. At a distance $5 \mathrm{~cm}$ from the wire, the magnetic field is $B$. The field at $20 \mathrm{~cm}$ from the wire would be

1 $2 \mathrm{~B}$
2 $\mathrm{B} / 4$
3 $\mathrm{B} / 2$
4 $\mathrm{B}$
Moving Charges & Magnetism

153336 In a mass spectrometer used for measuring masses of ions, the ions are initially acceleration by an electric potential $V$ and then made describe semicircular paths of radius $R$ using magnetic field $B$. If $V$ and $B$ are kept constant the ratio $\left(\frac{\text { charge on the ion }}{\text { mass of the ion }}\right)$ will be proportional to

1 $\frac{1}{R}$
2 $\frac{1}{\mathrm{R}^{2}}$
3 $\mathrm{R}^{2}$
4 $\mathrm{R}$
Moving Charges & Magnetism

153331 A current of 2 ampere is made to flow through a coil which has only one turn. The magnetic field produced at the centre is $4 \pi \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$. The radius of the coil is :

1 $0.0001 \mathrm{~m}$
2 $0.01 \mathrm{~m}$
3 $0.1 \mathrm{~m}$
4 $0.001 \mathrm{~m}$
Moving Charges & Magnetism

153332 Force $\vec{F}$ experienced by a charger q moving with a velocity $\vec{v}$ in an electric field of strength $\vec{E}$ and a magnetic field of strength $\vec{B}$ is:

1 $\vec{F}=q[\vec{E}+(\vec{v} \times \vec{B})]$
2 $\overrightarrow{\mathrm{F}}=\mathrm{q}[\overrightarrow{\mathrm{B}}+(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{E}})]$
3 $\vec{F}=q[(\vec{v} \cdot \vec{E})+(\vec{B} \times \vec{v})]$
4 $\vec{F}=q[(\vec{v} \times \vec{E})+(\vec{v} \times \vec{B})]$
Moving Charges & Magnetism

153333 An electric current passes through a long straight wire. At a distance $5 \mathrm{~cm}$ from the wire, the magnetic field is $B$. The field at $20 \mathrm{~cm}$ from the wire would be

1 $2 \mathrm{~B}$
2 $\mathrm{B} / 4$
3 $\mathrm{B} / 2$
4 $\mathrm{B}$
Moving Charges & Magnetism

153336 In a mass spectrometer used for measuring masses of ions, the ions are initially acceleration by an electric potential $V$ and then made describe semicircular paths of radius $R$ using magnetic field $B$. If $V$ and $B$ are kept constant the ratio $\left(\frac{\text { charge on the ion }}{\text { mass of the ion }}\right)$ will be proportional to

1 $\frac{1}{R}$
2 $\frac{1}{\mathrm{R}^{2}}$
3 $\mathrm{R}^{2}$
4 $\mathrm{R}$
Moving Charges & Magnetism

153331 A current of 2 ampere is made to flow through a coil which has only one turn. The magnetic field produced at the centre is $4 \pi \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$. The radius of the coil is :

1 $0.0001 \mathrm{~m}$
2 $0.01 \mathrm{~m}$
3 $0.1 \mathrm{~m}$
4 $0.001 \mathrm{~m}$
Moving Charges & Magnetism

153332 Force $\vec{F}$ experienced by a charger q moving with a velocity $\vec{v}$ in an electric field of strength $\vec{E}$ and a magnetic field of strength $\vec{B}$ is:

1 $\vec{F}=q[\vec{E}+(\vec{v} \times \vec{B})]$
2 $\overrightarrow{\mathrm{F}}=\mathrm{q}[\overrightarrow{\mathrm{B}}+(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{E}})]$
3 $\vec{F}=q[(\vec{v} \cdot \vec{E})+(\vec{B} \times \vec{v})]$
4 $\vec{F}=q[(\vec{v} \times \vec{E})+(\vec{v} \times \vec{B})]$
Moving Charges & Magnetism

153333 An electric current passes through a long straight wire. At a distance $5 \mathrm{~cm}$ from the wire, the magnetic field is $B$. The field at $20 \mathrm{~cm}$ from the wire would be

1 $2 \mathrm{~B}$
2 $\mathrm{B} / 4$
3 $\mathrm{B} / 2$
4 $\mathrm{B}$
Moving Charges & Magnetism

153336 In a mass spectrometer used for measuring masses of ions, the ions are initially acceleration by an electric potential $V$ and then made describe semicircular paths of radius $R$ using magnetic field $B$. If $V$ and $B$ are kept constant the ratio $\left(\frac{\text { charge on the ion }}{\text { mass of the ion }}\right)$ will be proportional to

1 $\frac{1}{R}$
2 $\frac{1}{\mathrm{R}^{2}}$
3 $\mathrm{R}^{2}$
4 $\mathrm{R}$
Moving Charges & Magnetism

153331 A current of 2 ampere is made to flow through a coil which has only one turn. The magnetic field produced at the centre is $4 \pi \times 10^{-6} \mathrm{~Wb} / \mathrm{m}^{2}$. The radius of the coil is :

1 $0.0001 \mathrm{~m}$
2 $0.01 \mathrm{~m}$
3 $0.1 \mathrm{~m}$
4 $0.001 \mathrm{~m}$
Moving Charges & Magnetism

153332 Force $\vec{F}$ experienced by a charger q moving with a velocity $\vec{v}$ in an electric field of strength $\vec{E}$ and a magnetic field of strength $\vec{B}$ is:

1 $\vec{F}=q[\vec{E}+(\vec{v} \times \vec{B})]$
2 $\overrightarrow{\mathrm{F}}=\mathrm{q}[\overrightarrow{\mathrm{B}}+(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{E}})]$
3 $\vec{F}=q[(\vec{v} \cdot \vec{E})+(\vec{B} \times \vec{v})]$
4 $\vec{F}=q[(\vec{v} \times \vec{E})+(\vec{v} \times \vec{B})]$
Moving Charges & Magnetism

153333 An electric current passes through a long straight wire. At a distance $5 \mathrm{~cm}$ from the wire, the magnetic field is $B$. The field at $20 \mathrm{~cm}$ from the wire would be

1 $2 \mathrm{~B}$
2 $\mathrm{B} / 4$
3 $\mathrm{B} / 2$
4 $\mathrm{B}$
Moving Charges & Magnetism

153336 In a mass spectrometer used for measuring masses of ions, the ions are initially acceleration by an electric potential $V$ and then made describe semicircular paths of radius $R$ using magnetic field $B$. If $V$ and $B$ are kept constant the ratio $\left(\frac{\text { charge on the ion }}{\text { mass of the ion }}\right)$ will be proportional to

1 $\frac{1}{R}$
2 $\frac{1}{\mathrm{R}^{2}}$
3 $\mathrm{R}^{2}$
4 $\mathrm{R}$