00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153326 Magnetic field intensity $H$ at the centre of a circular loop of radius $r$ carrying current $I$ e.m.u. is

1 $\frac{r}{\mathrm{I}}$ oersted
2 $\frac{2 \pi \mathrm{I}}{\mathrm{r}}$ oersted
3 $\frac{\mathrm{I}}{2 \pi \mathrm{r}}$ oersted
4 $\frac{2 \pi \mathrm{r}}{\mathrm{I}}$ oersted
Moving Charges & Magnetism

153327 A beam of protons with velocity $4 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a uniform magnetic field of $0.3 \mathrm{~T}$ at an angle of $60^{\circ}$ to the magnetic field. Find the radius of the helical path taken by the proton beam.

1 $0.2 \mathrm{~cm}$
2 $1.2 \mathrm{~cm}$
3 $2.2 \mathrm{~cm}$
4 $0.122 \mathrm{~cm}$
Moving Charges & Magnetism

153328 Two concentric circular coils of ten turns each are situated in the same plane. Their radii are $20 \mathrm{~cm}$ and $40 \mathrm{~cm}$ and they carry respectively $0.2 \mathrm{~A}$ and $0.3 \mathrm{~A}$ currents in opposite direction. The magnetic field in tesla at the centre is

1 $35 \mu_{0} / 4$
2 $\mu_{0} / 80$
3 $7 \mu_{0} / 80$
4 $5 \mu_{0} / 4$
Moving Charges & Magnetism

153330 An electron is moving on circular path of radius $r$ with speed $v$ in a transverse magnetic field B. $\frac{\mathrm{e}}{\mathrm{m}}$ for it will be equal to

1 $\frac{\mathrm{B}}{\mathrm{rv}}$
2 Bvr
3 $\frac{\mathrm{V}}{\mathrm{Br}}$
4 $\frac{\mathrm{rv}}{\mathrm{B}}$
Moving Charges & Magnetism

153326 Magnetic field intensity $H$ at the centre of a circular loop of radius $r$ carrying current $I$ e.m.u. is

1 $\frac{r}{\mathrm{I}}$ oersted
2 $\frac{2 \pi \mathrm{I}}{\mathrm{r}}$ oersted
3 $\frac{\mathrm{I}}{2 \pi \mathrm{r}}$ oersted
4 $\frac{2 \pi \mathrm{r}}{\mathrm{I}}$ oersted
Moving Charges & Magnetism

153327 A beam of protons with velocity $4 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a uniform magnetic field of $0.3 \mathrm{~T}$ at an angle of $60^{\circ}$ to the magnetic field. Find the radius of the helical path taken by the proton beam.

1 $0.2 \mathrm{~cm}$
2 $1.2 \mathrm{~cm}$
3 $2.2 \mathrm{~cm}$
4 $0.122 \mathrm{~cm}$
Moving Charges & Magnetism

153328 Two concentric circular coils of ten turns each are situated in the same plane. Their radii are $20 \mathrm{~cm}$ and $40 \mathrm{~cm}$ and they carry respectively $0.2 \mathrm{~A}$ and $0.3 \mathrm{~A}$ currents in opposite direction. The magnetic field in tesla at the centre is

1 $35 \mu_{0} / 4$
2 $\mu_{0} / 80$
3 $7 \mu_{0} / 80$
4 $5 \mu_{0} / 4$
Moving Charges & Magnetism

153330 An electron is moving on circular path of radius $r$ with speed $v$ in a transverse magnetic field B. $\frac{\mathrm{e}}{\mathrm{m}}$ for it will be equal to

1 $\frac{\mathrm{B}}{\mathrm{rv}}$
2 Bvr
3 $\frac{\mathrm{V}}{\mathrm{Br}}$
4 $\frac{\mathrm{rv}}{\mathrm{B}}$
Moving Charges & Magnetism

153326 Magnetic field intensity $H$ at the centre of a circular loop of radius $r$ carrying current $I$ e.m.u. is

1 $\frac{r}{\mathrm{I}}$ oersted
2 $\frac{2 \pi \mathrm{I}}{\mathrm{r}}$ oersted
3 $\frac{\mathrm{I}}{2 \pi \mathrm{r}}$ oersted
4 $\frac{2 \pi \mathrm{r}}{\mathrm{I}}$ oersted
Moving Charges & Magnetism

153327 A beam of protons with velocity $4 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a uniform magnetic field of $0.3 \mathrm{~T}$ at an angle of $60^{\circ}$ to the magnetic field. Find the radius of the helical path taken by the proton beam.

1 $0.2 \mathrm{~cm}$
2 $1.2 \mathrm{~cm}$
3 $2.2 \mathrm{~cm}$
4 $0.122 \mathrm{~cm}$
Moving Charges & Magnetism

153328 Two concentric circular coils of ten turns each are situated in the same plane. Their radii are $20 \mathrm{~cm}$ and $40 \mathrm{~cm}$ and they carry respectively $0.2 \mathrm{~A}$ and $0.3 \mathrm{~A}$ currents in opposite direction. The magnetic field in tesla at the centre is

1 $35 \mu_{0} / 4$
2 $\mu_{0} / 80$
3 $7 \mu_{0} / 80$
4 $5 \mu_{0} / 4$
Moving Charges & Magnetism

153330 An electron is moving on circular path of radius $r$ with speed $v$ in a transverse magnetic field B. $\frac{\mathrm{e}}{\mathrm{m}}$ for it will be equal to

1 $\frac{\mathrm{B}}{\mathrm{rv}}$
2 Bvr
3 $\frac{\mathrm{V}}{\mathrm{Br}}$
4 $\frac{\mathrm{rv}}{\mathrm{B}}$
Moving Charges & Magnetism

153326 Magnetic field intensity $H$ at the centre of a circular loop of radius $r$ carrying current $I$ e.m.u. is

1 $\frac{r}{\mathrm{I}}$ oersted
2 $\frac{2 \pi \mathrm{I}}{\mathrm{r}}$ oersted
3 $\frac{\mathrm{I}}{2 \pi \mathrm{r}}$ oersted
4 $\frac{2 \pi \mathrm{r}}{\mathrm{I}}$ oersted
Moving Charges & Magnetism

153327 A beam of protons with velocity $4 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a uniform magnetic field of $0.3 \mathrm{~T}$ at an angle of $60^{\circ}$ to the magnetic field. Find the radius of the helical path taken by the proton beam.

1 $0.2 \mathrm{~cm}$
2 $1.2 \mathrm{~cm}$
3 $2.2 \mathrm{~cm}$
4 $0.122 \mathrm{~cm}$
Moving Charges & Magnetism

153328 Two concentric circular coils of ten turns each are situated in the same plane. Their radii are $20 \mathrm{~cm}$ and $40 \mathrm{~cm}$ and they carry respectively $0.2 \mathrm{~A}$ and $0.3 \mathrm{~A}$ currents in opposite direction. The magnetic field in tesla at the centre is

1 $35 \mu_{0} / 4$
2 $\mu_{0} / 80$
3 $7 \mu_{0} / 80$
4 $5 \mu_{0} / 4$
Moving Charges & Magnetism

153330 An electron is moving on circular path of radius $r$ with speed $v$ in a transverse magnetic field B. $\frac{\mathrm{e}}{\mathrm{m}}$ for it will be equal to

1 $\frac{\mathrm{B}}{\mathrm{rv}}$
2 Bvr
3 $\frac{\mathrm{V}}{\mathrm{Br}}$
4 $\frac{\mathrm{rv}}{\mathrm{B}}$