00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153287 Let a straight wire of length $l$ carries a current i. The magnitude of magnetic field produced by the current at point $P$ (as shown in figure) is-

1 $\frac{\mu_{0} \mathrm{i}}{2 \sqrt{2} \pi \mathrm{l}}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{i}}{8 \pi \mathrm{l}}$
3 $\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{l}}$
4 $\frac{\sqrt{2} \mu_{0} \mathrm{i}}{\pi \mathrm{l}}$
Moving Charges & Magnetism

153290 If a current $I$ is flowing in a loop of radius $r$ as shown in adjoining figure, then the magnetic field induction at the centre $O$ will be

1 Zero
2 $\frac{\mu_{0} \mathrm{I} \theta}{4 \pi \mathrm{r}}$
3 $\frac{\mu_{0} I \sin \theta}{4 \pi r}$
4 $\frac{2 \mu_{0} I \sin \theta}{4 \pi r^{2}}$
Moving Charges & Magnetism

153291 Charge $q$ is uniformly spread on a thin ring of radius $R$. The ring rotates about its axis with a uniform frequency $f \mathrm{~Hz}$. The magnitude of magnetic induction at the centre of the ring is

1 $\frac{\mu_{0} q f}{2 R}$
2 $\frac{\mu_{0} q}{2 \mathrm{fR}}$
3 $\frac{\mu_{0} q}{2 \pi f R}$
4 $\frac{\mu_{0} \mathrm{qf}}{2 \pi \mathrm{R}}$
Moving Charges & Magnetism

153292 In hydrogen atom, an electron is revolving in the orbit of radius $0.53 \AA$ with $6.6 \times 10^{15}$ rps. Magnetic field produced at the centre of the orbit is

1 $0.125 \mathrm{~Wb} / \mathrm{m}^{2}$
2 $1.25 \mathrm{~Wb} / \mathrm{m}^{2}$
3 $12.5 \mathrm{~Wb} / \mathrm{m}^{2}$
4 $125 \mathrm{~Wb} / \mathrm{m}^{2}$
Moving Charges & Magnetism

153287 Let a straight wire of length $l$ carries a current i. The magnitude of magnetic field produced by the current at point $P$ (as shown in figure) is-

1 $\frac{\mu_{0} \mathrm{i}}{2 \sqrt{2} \pi \mathrm{l}}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{i}}{8 \pi \mathrm{l}}$
3 $\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{l}}$
4 $\frac{\sqrt{2} \mu_{0} \mathrm{i}}{\pi \mathrm{l}}$
Moving Charges & Magnetism

153290 If a current $I$ is flowing in a loop of radius $r$ as shown in adjoining figure, then the magnetic field induction at the centre $O$ will be

1 Zero
2 $\frac{\mu_{0} \mathrm{I} \theta}{4 \pi \mathrm{r}}$
3 $\frac{\mu_{0} I \sin \theta}{4 \pi r}$
4 $\frac{2 \mu_{0} I \sin \theta}{4 \pi r^{2}}$
Moving Charges & Magnetism

153291 Charge $q$ is uniformly spread on a thin ring of radius $R$. The ring rotates about its axis with a uniform frequency $f \mathrm{~Hz}$. The magnitude of magnetic induction at the centre of the ring is

1 $\frac{\mu_{0} q f}{2 R}$
2 $\frac{\mu_{0} q}{2 \mathrm{fR}}$
3 $\frac{\mu_{0} q}{2 \pi f R}$
4 $\frac{\mu_{0} \mathrm{qf}}{2 \pi \mathrm{R}}$
Moving Charges & Magnetism

153292 In hydrogen atom, an electron is revolving in the orbit of radius $0.53 \AA$ with $6.6 \times 10^{15}$ rps. Magnetic field produced at the centre of the orbit is

1 $0.125 \mathrm{~Wb} / \mathrm{m}^{2}$
2 $1.25 \mathrm{~Wb} / \mathrm{m}^{2}$
3 $12.5 \mathrm{~Wb} / \mathrm{m}^{2}$
4 $125 \mathrm{~Wb} / \mathrm{m}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153287 Let a straight wire of length $l$ carries a current i. The magnitude of magnetic field produced by the current at point $P$ (as shown in figure) is-

1 $\frac{\mu_{0} \mathrm{i}}{2 \sqrt{2} \pi \mathrm{l}}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{i}}{8 \pi \mathrm{l}}$
3 $\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{l}}$
4 $\frac{\sqrt{2} \mu_{0} \mathrm{i}}{\pi \mathrm{l}}$
Moving Charges & Magnetism

153290 If a current $I$ is flowing in a loop of radius $r$ as shown in adjoining figure, then the magnetic field induction at the centre $O$ will be

1 Zero
2 $\frac{\mu_{0} \mathrm{I} \theta}{4 \pi \mathrm{r}}$
3 $\frac{\mu_{0} I \sin \theta}{4 \pi r}$
4 $\frac{2 \mu_{0} I \sin \theta}{4 \pi r^{2}}$
Moving Charges & Magnetism

153291 Charge $q$ is uniformly spread on a thin ring of radius $R$. The ring rotates about its axis with a uniform frequency $f \mathrm{~Hz}$. The magnitude of magnetic induction at the centre of the ring is

1 $\frac{\mu_{0} q f}{2 R}$
2 $\frac{\mu_{0} q}{2 \mathrm{fR}}$
3 $\frac{\mu_{0} q}{2 \pi f R}$
4 $\frac{\mu_{0} \mathrm{qf}}{2 \pi \mathrm{R}}$
Moving Charges & Magnetism

153292 In hydrogen atom, an electron is revolving in the orbit of radius $0.53 \AA$ with $6.6 \times 10^{15}$ rps. Magnetic field produced at the centre of the orbit is

1 $0.125 \mathrm{~Wb} / \mathrm{m}^{2}$
2 $1.25 \mathrm{~Wb} / \mathrm{m}^{2}$
3 $12.5 \mathrm{~Wb} / \mathrm{m}^{2}$
4 $125 \mathrm{~Wb} / \mathrm{m}^{2}$
Moving Charges & Magnetism

153287 Let a straight wire of length $l$ carries a current i. The magnitude of magnetic field produced by the current at point $P$ (as shown in figure) is-

1 $\frac{\mu_{0} \mathrm{i}}{2 \sqrt{2} \pi \mathrm{l}}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{i}}{8 \pi \mathrm{l}}$
3 $\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{l}}$
4 $\frac{\sqrt{2} \mu_{0} \mathrm{i}}{\pi \mathrm{l}}$
Moving Charges & Magnetism

153290 If a current $I$ is flowing in a loop of radius $r$ as shown in adjoining figure, then the magnetic field induction at the centre $O$ will be

1 Zero
2 $\frac{\mu_{0} \mathrm{I} \theta}{4 \pi \mathrm{r}}$
3 $\frac{\mu_{0} I \sin \theta}{4 \pi r}$
4 $\frac{2 \mu_{0} I \sin \theta}{4 \pi r^{2}}$
Moving Charges & Magnetism

153291 Charge $q$ is uniformly spread on a thin ring of radius $R$. The ring rotates about its axis with a uniform frequency $f \mathrm{~Hz}$. The magnitude of magnetic induction at the centre of the ring is

1 $\frac{\mu_{0} q f}{2 R}$
2 $\frac{\mu_{0} q}{2 \mathrm{fR}}$
3 $\frac{\mu_{0} q}{2 \pi f R}$
4 $\frac{\mu_{0} \mathrm{qf}}{2 \pi \mathrm{R}}$
Moving Charges & Magnetism

153292 In hydrogen atom, an electron is revolving in the orbit of radius $0.53 \AA$ with $6.6 \times 10^{15}$ rps. Magnetic field produced at the centre of the orbit is

1 $0.125 \mathrm{~Wb} / \mathrm{m}^{2}$
2 $1.25 \mathrm{~Wb} / \mathrm{m}^{2}$
3 $12.5 \mathrm{~Wb} / \mathrm{m}^{2}$
4 $125 \mathrm{~Wb} / \mathrm{m}^{2}$