00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153259 1A current flows through an infinitely long straight wire. The magnetic field produced at a point $1 \mathrm{~m}$ away from it is

1 $2 \times 10^{-3} \mathrm{~T}$
2 $2 / 10 \mathrm{~T}$
3 $2 \times 10^{-7} \mathrm{~T}$
4 $2 \pi \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153260 A particle is moving with velocity $\vec{v}=\hat{i}+3 \hat{j}$ and it produces an electric field at a point given by $\overrightarrow{\mathbf{E}}=\mathbf{2} \hat{\mathbf{k}}$. It will produce magnetic field at that point equal to (all quantities are in SI units)

1 $\frac{6 \hat{i}-2 \hat{j}}{c^{2}}$
2 $\frac{6 \hat{i}+2 \hat{j}}{c^{2}}$
3 zero
4 cannot be determined from the given data
Moving Charges & Magnetism

153261 Calculate the magnetic field at the centre of a coil in the form of a square of side 2a carrying a current $I$.

1 $\frac{2 \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
3 $\frac{5 \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
4 $\frac{\sqrt{3} \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
Moving Charges & Magnetism

153262 A steady current is set up in a cubic network composed of wires of equal resistance and length $d$ as shown in figure. What is the magnetic field at the centre $P$ due to the cubic network

1 $\frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{I}}{\mathrm{d}}$
2 $\frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{I}}{\sqrt{2} \mathrm{~d}}$
3 0
4 $\frac{\mu_{0}}{4 \pi} \frac{\theta \pi \mathrm{I}}{\mathrm{d}}$
Moving Charges & Magnetism

153259 1A current flows through an infinitely long straight wire. The magnetic field produced at a point $1 \mathrm{~m}$ away from it is

1 $2 \times 10^{-3} \mathrm{~T}$
2 $2 / 10 \mathrm{~T}$
3 $2 \times 10^{-7} \mathrm{~T}$
4 $2 \pi \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153260 A particle is moving with velocity $\vec{v}=\hat{i}+3 \hat{j}$ and it produces an electric field at a point given by $\overrightarrow{\mathbf{E}}=\mathbf{2} \hat{\mathbf{k}}$. It will produce magnetic field at that point equal to (all quantities are in SI units)

1 $\frac{6 \hat{i}-2 \hat{j}}{c^{2}}$
2 $\frac{6 \hat{i}+2 \hat{j}}{c^{2}}$
3 zero
4 cannot be determined from the given data
Moving Charges & Magnetism

153261 Calculate the magnetic field at the centre of a coil in the form of a square of side 2a carrying a current $I$.

1 $\frac{2 \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
3 $\frac{5 \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
4 $\frac{\sqrt{3} \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
Moving Charges & Magnetism

153262 A steady current is set up in a cubic network composed of wires of equal resistance and length $d$ as shown in figure. What is the magnetic field at the centre $P$ due to the cubic network

1 $\frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{I}}{\mathrm{d}}$
2 $\frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{I}}{\sqrt{2} \mathrm{~d}}$
3 0
4 $\frac{\mu_{0}}{4 \pi} \frac{\theta \pi \mathrm{I}}{\mathrm{d}}$
Moving Charges & Magnetism

153259 1A current flows through an infinitely long straight wire. The magnetic field produced at a point $1 \mathrm{~m}$ away from it is

1 $2 \times 10^{-3} \mathrm{~T}$
2 $2 / 10 \mathrm{~T}$
3 $2 \times 10^{-7} \mathrm{~T}$
4 $2 \pi \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153260 A particle is moving with velocity $\vec{v}=\hat{i}+3 \hat{j}$ and it produces an electric field at a point given by $\overrightarrow{\mathbf{E}}=\mathbf{2} \hat{\mathbf{k}}$. It will produce magnetic field at that point equal to (all quantities are in SI units)

1 $\frac{6 \hat{i}-2 \hat{j}}{c^{2}}$
2 $\frac{6 \hat{i}+2 \hat{j}}{c^{2}}$
3 zero
4 cannot be determined from the given data
Moving Charges & Magnetism

153261 Calculate the magnetic field at the centre of a coil in the form of a square of side 2a carrying a current $I$.

1 $\frac{2 \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
3 $\frac{5 \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
4 $\frac{\sqrt{3} \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
Moving Charges & Magnetism

153262 A steady current is set up in a cubic network composed of wires of equal resistance and length $d$ as shown in figure. What is the magnetic field at the centre $P$ due to the cubic network

1 $\frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{I}}{\mathrm{d}}$
2 $\frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{I}}{\sqrt{2} \mathrm{~d}}$
3 0
4 $\frac{\mu_{0}}{4 \pi} \frac{\theta \pi \mathrm{I}}{\mathrm{d}}$
Moving Charges & Magnetism

153259 1A current flows through an infinitely long straight wire. The magnetic field produced at a point $1 \mathrm{~m}$ away from it is

1 $2 \times 10^{-3} \mathrm{~T}$
2 $2 / 10 \mathrm{~T}$
3 $2 \times 10^{-7} \mathrm{~T}$
4 $2 \pi \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153260 A particle is moving with velocity $\vec{v}=\hat{i}+3 \hat{j}$ and it produces an electric field at a point given by $\overrightarrow{\mathbf{E}}=\mathbf{2} \hat{\mathbf{k}}$. It will produce magnetic field at that point equal to (all quantities are in SI units)

1 $\frac{6 \hat{i}-2 \hat{j}}{c^{2}}$
2 $\frac{6 \hat{i}+2 \hat{j}}{c^{2}}$
3 zero
4 cannot be determined from the given data
Moving Charges & Magnetism

153261 Calculate the magnetic field at the centre of a coil in the form of a square of side 2a carrying a current $I$.

1 $\frac{2 \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
2 $\frac{\sqrt{2} \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
3 $\frac{5 \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
4 $\frac{\sqrt{3} \mu_{0} \mathrm{I}}{\pi \mathrm{a}}$
Moving Charges & Magnetism

153262 A steady current is set up in a cubic network composed of wires of equal resistance and length $d$ as shown in figure. What is the magnetic field at the centre $P$ due to the cubic network

1 $\frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{I}}{\mathrm{d}}$
2 $\frac{\mu_{0}}{4 \pi} \frac{2 \mathrm{I}}{\sqrt{2} \mathrm{~d}}$
3 0
4 $\frac{\mu_{0}}{4 \pi} \frac{\theta \pi \mathrm{I}}{\mathrm{d}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here