00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153192 Find magnetic field at centre $P$ if length of side of square loop is $20 \mathrm{~cm}$.

1 $12 \sqrt{2} \times 10^{-6} \mathrm{~T}$
2 $12 \times 10^{-6} \mathrm{~T}$
3 $6 \times 10^{-6} \mathrm{~T}$
4 $6 \sqrt{2} \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153193 In figure two parallel infinitely long current carrying wires are shown. If resultant magnetic field at point $\mathrm{A}$ is zero. Then determine current $\mathrm{I}$.

1 $50 \mathrm{~A}$
2 $15 \mathrm{~A}$
3 $30 \mathrm{~A}$
4 $25 \mathrm{~A}$
Moving Charges & Magnetism

153194 A semi circular arc of radius $r$ and a straight wire along the diameter, both are carrying same current $i$. Find out magnetic force per unit length at point $P$ at centre.

1 $\left(\frac{\mu_{0} i^{2}}{4 r}\right)$
2 $\left(\frac{\mu_{0} i^{2}}{2 r}\right)$
3 $\left(\frac{\mu_{0} i^{2}}{r}\right)$
4 $\left(\frac{2 \mu_{0} i^{2}}{r}\right)$
Moving Charges & Magnetism

153195 In the given figure, find out magnetic field at point \(B\) (Given: \(I=2.5 \mathrm{~A}, \mathrm{r}=5 \mathrm{~cm}\) )

1 $\pi \times\left[1+\frac{1}{\pi}\right] \times 10^{-5} \mathrm{~T}$
2 $\pi \times\left[1+\frac{1}{\pi}\right] \times 10^{-6} \mathrm{~T}$
3 $\pi\left[\frac{\pi+1}{\pi}\right] \times 10^{-6} \mathrm{~T}$
4 $\left(\frac{\pi+1}{\pi}\right) \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153192 Find magnetic field at centre $P$ if length of side of square loop is $20 \mathrm{~cm}$.

1 $12 \sqrt{2} \times 10^{-6} \mathrm{~T}$
2 $12 \times 10^{-6} \mathrm{~T}$
3 $6 \times 10^{-6} \mathrm{~T}$
4 $6 \sqrt{2} \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153193 In figure two parallel infinitely long current carrying wires are shown. If resultant magnetic field at point $\mathrm{A}$ is zero. Then determine current $\mathrm{I}$.

1 $50 \mathrm{~A}$
2 $15 \mathrm{~A}$
3 $30 \mathrm{~A}$
4 $25 \mathrm{~A}$
Moving Charges & Magnetism

153194 A semi circular arc of radius $r$ and a straight wire along the diameter, both are carrying same current $i$. Find out magnetic force per unit length at point $P$ at centre.

1 $\left(\frac{\mu_{0} i^{2}}{4 r}\right)$
2 $\left(\frac{\mu_{0} i^{2}}{2 r}\right)$
3 $\left(\frac{\mu_{0} i^{2}}{r}\right)$
4 $\left(\frac{2 \mu_{0} i^{2}}{r}\right)$
Moving Charges & Magnetism

153195 In the given figure, find out magnetic field at point \(B\) (Given: \(I=2.5 \mathrm{~A}, \mathrm{r}=5 \mathrm{~cm}\) )

1 $\pi \times\left[1+\frac{1}{\pi}\right] \times 10^{-5} \mathrm{~T}$
2 $\pi \times\left[1+\frac{1}{\pi}\right] \times 10^{-6} \mathrm{~T}$
3 $\pi\left[\frac{\pi+1}{\pi}\right] \times 10^{-6} \mathrm{~T}$
4 $\left(\frac{\pi+1}{\pi}\right) \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153192 Find magnetic field at centre $P$ if length of side of square loop is $20 \mathrm{~cm}$.

1 $12 \sqrt{2} \times 10^{-6} \mathrm{~T}$
2 $12 \times 10^{-6} \mathrm{~T}$
3 $6 \times 10^{-6} \mathrm{~T}$
4 $6 \sqrt{2} \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153193 In figure two parallel infinitely long current carrying wires are shown. If resultant magnetic field at point $\mathrm{A}$ is zero. Then determine current $\mathrm{I}$.

1 $50 \mathrm{~A}$
2 $15 \mathrm{~A}$
3 $30 \mathrm{~A}$
4 $25 \mathrm{~A}$
Moving Charges & Magnetism

153194 A semi circular arc of radius $r$ and a straight wire along the diameter, both are carrying same current $i$. Find out magnetic force per unit length at point $P$ at centre.

1 $\left(\frac{\mu_{0} i^{2}}{4 r}\right)$
2 $\left(\frac{\mu_{0} i^{2}}{2 r}\right)$
3 $\left(\frac{\mu_{0} i^{2}}{r}\right)$
4 $\left(\frac{2 \mu_{0} i^{2}}{r}\right)$
Moving Charges & Magnetism

153195 In the given figure, find out magnetic field at point \(B\) (Given: \(I=2.5 \mathrm{~A}, \mathrm{r}=5 \mathrm{~cm}\) )

1 $\pi \times\left[1+\frac{1}{\pi}\right] \times 10^{-5} \mathrm{~T}$
2 $\pi \times\left[1+\frac{1}{\pi}\right] \times 10^{-6} \mathrm{~T}$
3 $\pi\left[\frac{\pi+1}{\pi}\right] \times 10^{-6} \mathrm{~T}$
4 $\left(\frac{\pi+1}{\pi}\right) \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153192 Find magnetic field at centre $P$ if length of side of square loop is $20 \mathrm{~cm}$.

1 $12 \sqrt{2} \times 10^{-6} \mathrm{~T}$
2 $12 \times 10^{-6} \mathrm{~T}$
3 $6 \times 10^{-6} \mathrm{~T}$
4 $6 \sqrt{2} \times 10^{-6} \mathrm{~T}$
Moving Charges & Magnetism

153193 In figure two parallel infinitely long current carrying wires are shown. If resultant magnetic field at point $\mathrm{A}$ is zero. Then determine current $\mathrm{I}$.

1 $50 \mathrm{~A}$
2 $15 \mathrm{~A}$
3 $30 \mathrm{~A}$
4 $25 \mathrm{~A}$
Moving Charges & Magnetism

153194 A semi circular arc of radius $r$ and a straight wire along the diameter, both are carrying same current $i$. Find out magnetic force per unit length at point $P$ at centre.

1 $\left(\frac{\mu_{0} i^{2}}{4 r}\right)$
2 $\left(\frac{\mu_{0} i^{2}}{2 r}\right)$
3 $\left(\frac{\mu_{0} i^{2}}{r}\right)$
4 $\left(\frac{2 \mu_{0} i^{2}}{r}\right)$
Moving Charges & Magnetism

153195 In the given figure, find out magnetic field at point \(B\) (Given: \(I=2.5 \mathrm{~A}, \mathrm{r}=5 \mathrm{~cm}\) )

1 $\pi \times\left[1+\frac{1}{\pi}\right] \times 10^{-5} \mathrm{~T}$
2 $\pi \times\left[1+\frac{1}{\pi}\right] \times 10^{-6} \mathrm{~T}$
3 $\pi\left[\frac{\pi+1}{\pi}\right] \times 10^{-6} \mathrm{~T}$
4 $\left(\frac{\pi+1}{\pi}\right) \times 10^{-6} \mathrm{~T}$