00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153179 A coil having 100 turns is wound tightly in the form of a spiral with inner and outer radii $1 \mathrm{~cm}$ and $2 \mathrm{~cm}$, respectively. When a current $1 \mathrm{~A}$ passes through the coil, the magnetic field at the centre of the coil is

1 $2 \pi \ln (2) \mathrm{mT}$
2 $\frac{\pi}{2} \ln (2) \mathrm{mT}$
3 $\pi \ln (2) \mathrm{mT}$
4 $\sqrt{2} \pi \ln (2) \mathrm{mT}$
Moving Charges & Magnetism

153180 The magnetic induction at point $O$ of the given infinitely long current carrying wire shown in the figure below is

1 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}\left(1-\frac{3 \pi}{2}\right)$
2 $\frac{\mu_{0} I}{2 R(1+\pi)}$
3 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}\left(1+\frac{3 \pi}{2}\right)$
4 $\frac{\mu_{0} I}{4 \pi R}$
Moving Charges & Magnetism

153176 The magnetic field at point $P$ of given figure due to carrying of current $I$ by a conductor of radius $R$, is

1 $\frac{\mu_{0} I}{4 \pi \mathrm{r}} \mathrm{T}$
2 $\frac{\mu_{\mathrm{o}} I}{2 \pi \mathrm{r}} \mathrm{T}$
3 $\frac{\mu_{\mathrm{o}} I}{2 \pi \mathrm{R}} \mathrm{T}$
4 $\frac{\mu_{\mathrm{o}} I}{4 \pi \mathrm{R}} \mathrm{T}$
Moving Charges & Magnetism

153181 A straight conductor carrying current i splits into two parts as shown in the figure. The radius of the circular loop is $R$. The total magnetic field at the centre $P$ of the loop is

1 Zero
2 $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, outward
3 $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, inward
4 $\frac{\mu_{0} \mathrm{i}}{2 \mathrm{R}}$, inward
Moving Charges & Magnetism

153179 A coil having 100 turns is wound tightly in the form of a spiral with inner and outer radii $1 \mathrm{~cm}$ and $2 \mathrm{~cm}$, respectively. When a current $1 \mathrm{~A}$ passes through the coil, the magnetic field at the centre of the coil is

1 $2 \pi \ln (2) \mathrm{mT}$
2 $\frac{\pi}{2} \ln (2) \mathrm{mT}$
3 $\pi \ln (2) \mathrm{mT}$
4 $\sqrt{2} \pi \ln (2) \mathrm{mT}$
Moving Charges & Magnetism

153180 The magnetic induction at point $O$ of the given infinitely long current carrying wire shown in the figure below is

1 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}\left(1-\frac{3 \pi}{2}\right)$
2 $\frac{\mu_{0} I}{2 R(1+\pi)}$
3 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}\left(1+\frac{3 \pi}{2}\right)$
4 $\frac{\mu_{0} I}{4 \pi R}$
Moving Charges & Magnetism

153176 The magnetic field at point $P$ of given figure due to carrying of current $I$ by a conductor of radius $R$, is

1 $\frac{\mu_{0} I}{4 \pi \mathrm{r}} \mathrm{T}$
2 $\frac{\mu_{\mathrm{o}} I}{2 \pi \mathrm{r}} \mathrm{T}$
3 $\frac{\mu_{\mathrm{o}} I}{2 \pi \mathrm{R}} \mathrm{T}$
4 $\frac{\mu_{\mathrm{o}} I}{4 \pi \mathrm{R}} \mathrm{T}$
Moving Charges & Magnetism

153181 A straight conductor carrying current i splits into two parts as shown in the figure. The radius of the circular loop is $R$. The total magnetic field at the centre $P$ of the loop is

1 Zero
2 $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, outward
3 $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, inward
4 $\frac{\mu_{0} \mathrm{i}}{2 \mathrm{R}}$, inward
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153179 A coil having 100 turns is wound tightly in the form of a spiral with inner and outer radii $1 \mathrm{~cm}$ and $2 \mathrm{~cm}$, respectively. When a current $1 \mathrm{~A}$ passes through the coil, the magnetic field at the centre of the coil is

1 $2 \pi \ln (2) \mathrm{mT}$
2 $\frac{\pi}{2} \ln (2) \mathrm{mT}$
3 $\pi \ln (2) \mathrm{mT}$
4 $\sqrt{2} \pi \ln (2) \mathrm{mT}$
Moving Charges & Magnetism

153180 The magnetic induction at point $O$ of the given infinitely long current carrying wire shown in the figure below is

1 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}\left(1-\frac{3 \pi}{2}\right)$
2 $\frac{\mu_{0} I}{2 R(1+\pi)}$
3 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}\left(1+\frac{3 \pi}{2}\right)$
4 $\frac{\mu_{0} I}{4 \pi R}$
Moving Charges & Magnetism

153176 The magnetic field at point $P$ of given figure due to carrying of current $I$ by a conductor of radius $R$, is

1 $\frac{\mu_{0} I}{4 \pi \mathrm{r}} \mathrm{T}$
2 $\frac{\mu_{\mathrm{o}} I}{2 \pi \mathrm{r}} \mathrm{T}$
3 $\frac{\mu_{\mathrm{o}} I}{2 \pi \mathrm{R}} \mathrm{T}$
4 $\frac{\mu_{\mathrm{o}} I}{4 \pi \mathrm{R}} \mathrm{T}$
Moving Charges & Magnetism

153181 A straight conductor carrying current i splits into two parts as shown in the figure. The radius of the circular loop is $R$. The total magnetic field at the centre $P$ of the loop is

1 Zero
2 $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, outward
3 $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, inward
4 $\frac{\mu_{0} \mathrm{i}}{2 \mathrm{R}}$, inward
Moving Charges & Magnetism

153179 A coil having 100 turns is wound tightly in the form of a spiral with inner and outer radii $1 \mathrm{~cm}$ and $2 \mathrm{~cm}$, respectively. When a current $1 \mathrm{~A}$ passes through the coil, the magnetic field at the centre of the coil is

1 $2 \pi \ln (2) \mathrm{mT}$
2 $\frac{\pi}{2} \ln (2) \mathrm{mT}$
3 $\pi \ln (2) \mathrm{mT}$
4 $\sqrt{2} \pi \ln (2) \mathrm{mT}$
Moving Charges & Magnetism

153180 The magnetic induction at point $O$ of the given infinitely long current carrying wire shown in the figure below is

1 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}\left(1-\frac{3 \pi}{2}\right)$
2 $\frac{\mu_{0} I}{2 R(1+\pi)}$
3 $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}}\left(1+\frac{3 \pi}{2}\right)$
4 $\frac{\mu_{0} I}{4 \pi R}$
Moving Charges & Magnetism

153176 The magnetic field at point $P$ of given figure due to carrying of current $I$ by a conductor of radius $R$, is

1 $\frac{\mu_{0} I}{4 \pi \mathrm{r}} \mathrm{T}$
2 $\frac{\mu_{\mathrm{o}} I}{2 \pi \mathrm{r}} \mathrm{T}$
3 $\frac{\mu_{\mathrm{o}} I}{2 \pi \mathrm{R}} \mathrm{T}$
4 $\frac{\mu_{\mathrm{o}} I}{4 \pi \mathrm{R}} \mathrm{T}$
Moving Charges & Magnetism

153181 A straight conductor carrying current i splits into two parts as shown in the figure. The radius of the circular loop is $R$. The total magnetic field at the centre $P$ of the loop is

1 Zero
2 $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, outward
3 $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, inward
4 $\frac{\mu_{0} \mathrm{i}}{2 \mathrm{R}}$, inward