00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153123 A uniform magnetic field $\vec{B}$ is perpendicular to the plane of a circular loop of diameter $10 \mathrm{~cm}$ formed wire of diameter $2 \mathrm{~mm}$ and resistivity $2 \times 10^{-8} \Omega \mathrm{m}$. If a current of $11 \mathrm{~A}$ is to be induced in the loop then the rate at which $\vec{B}$ is to be changed is

1 $2.8 \mathrm{Ts}^{-1}$
2 $1.4 \mathrm{Ts}^{-1}$
3 $3.2 \mathrm{Ts}^{-1}$
4 $2.4 \mathrm{Ts}^{-1}$
Moving Charges & Magnetism

153124 A long current carrying wire produces a magnetic field of $1 \mathrm{~T}$ at a distance of $r$. The magnetic field at (A) $\frac{r}{2}$, (B) $2 r$ and (C) $3 r$ is

1 $(\mathrm{A})=2 \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
2 $(\mathrm{A})=3 \mathrm{~T},(\mathrm{~B})=\frac{1}{3} \mathrm{~T},(\mathrm{C})=\frac{1}{6} \mathrm{~T}$
3 $(\mathrm{A})=\frac{3}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{4} \mathrm{~T},(\mathrm{C})=\frac{1}{8} \mathrm{~T}$
4 $(\mathrm{A})=\frac{5}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
Moving Charges & Magnetism

153125 A compass needle oscillates 20 times per minute at a place where the dip is $45^{\circ}$ and the magnetic field is $B_{1}$. The same needle oscillates 30 times per minute at a place where the dip is $30^{\circ}$ and magnetic field is $B_{2}$. Then $B_{1}: B_{2}$ is

1 $9 \sqrt{3}: 4 \sqrt{2}$
2 $4 \sqrt{2}: 9 \sqrt{3}$
3 $3 \sqrt{3}: 2 \sqrt{2}$
4 $2 \sqrt{2}: 3 \sqrt{3}$
Moving Charges & Magnetism

153126 A rectangular coil of length $2 \mathrm{~cm}$ and width $1.25 \mathrm{~cm}$ with 250 turns carries a current of 55 $\mu \mathrm{A}$ and subjected to a magnetic field of strength 0.64 T. Work done for rotating the coil by $180^{\circ}$ against the torque is

1 $2.2 \mu \mathrm{J}$
2 $3.5 \mu \mathrm{J}$
3 $4.4 \mu \mathrm{J}$
4 $5.5 \mu \mathrm{J}$
Moving Charges & Magnetism

153127 An isosceles triangular current carrying loop is kept perpendicularly in a uniform magnetic field $\overrightarrow{\mathrm{B}}_{0}$ as shown in figure. The force on the loop due to magnetic field is

1 $\mathrm{ILB}_{0} \cos \theta$
2 $2 \mathrm{ILB}_{0} \cos \theta$
3 0
4 ILB $_{0} \sin \theta$
Moving Charges & Magnetism

153123 A uniform magnetic field $\vec{B}$ is perpendicular to the plane of a circular loop of diameter $10 \mathrm{~cm}$ formed wire of diameter $2 \mathrm{~mm}$ and resistivity $2 \times 10^{-8} \Omega \mathrm{m}$. If a current of $11 \mathrm{~A}$ is to be induced in the loop then the rate at which $\vec{B}$ is to be changed is

1 $2.8 \mathrm{Ts}^{-1}$
2 $1.4 \mathrm{Ts}^{-1}$
3 $3.2 \mathrm{Ts}^{-1}$
4 $2.4 \mathrm{Ts}^{-1}$
Moving Charges & Magnetism

153124 A long current carrying wire produces a magnetic field of $1 \mathrm{~T}$ at a distance of $r$. The magnetic field at (A) $\frac{r}{2}$, (B) $2 r$ and (C) $3 r$ is

1 $(\mathrm{A})=2 \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
2 $(\mathrm{A})=3 \mathrm{~T},(\mathrm{~B})=\frac{1}{3} \mathrm{~T},(\mathrm{C})=\frac{1}{6} \mathrm{~T}$
3 $(\mathrm{A})=\frac{3}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{4} \mathrm{~T},(\mathrm{C})=\frac{1}{8} \mathrm{~T}$
4 $(\mathrm{A})=\frac{5}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
Moving Charges & Magnetism

153125 A compass needle oscillates 20 times per minute at a place where the dip is $45^{\circ}$ and the magnetic field is $B_{1}$. The same needle oscillates 30 times per minute at a place where the dip is $30^{\circ}$ and magnetic field is $B_{2}$. Then $B_{1}: B_{2}$ is

1 $9 \sqrt{3}: 4 \sqrt{2}$
2 $4 \sqrt{2}: 9 \sqrt{3}$
3 $3 \sqrt{3}: 2 \sqrt{2}$
4 $2 \sqrt{2}: 3 \sqrt{3}$
Moving Charges & Magnetism

153126 A rectangular coil of length $2 \mathrm{~cm}$ and width $1.25 \mathrm{~cm}$ with 250 turns carries a current of 55 $\mu \mathrm{A}$ and subjected to a magnetic field of strength 0.64 T. Work done for rotating the coil by $180^{\circ}$ against the torque is

1 $2.2 \mu \mathrm{J}$
2 $3.5 \mu \mathrm{J}$
3 $4.4 \mu \mathrm{J}$
4 $5.5 \mu \mathrm{J}$
Moving Charges & Magnetism

153127 An isosceles triangular current carrying loop is kept perpendicularly in a uniform magnetic field $\overrightarrow{\mathrm{B}}_{0}$ as shown in figure. The force on the loop due to magnetic field is

1 $\mathrm{ILB}_{0} \cos \theta$
2 $2 \mathrm{ILB}_{0} \cos \theta$
3 0
4 ILB $_{0} \sin \theta$
Moving Charges & Magnetism

153123 A uniform magnetic field $\vec{B}$ is perpendicular to the plane of a circular loop of diameter $10 \mathrm{~cm}$ formed wire of diameter $2 \mathrm{~mm}$ and resistivity $2 \times 10^{-8} \Omega \mathrm{m}$. If a current of $11 \mathrm{~A}$ is to be induced in the loop then the rate at which $\vec{B}$ is to be changed is

1 $2.8 \mathrm{Ts}^{-1}$
2 $1.4 \mathrm{Ts}^{-1}$
3 $3.2 \mathrm{Ts}^{-1}$
4 $2.4 \mathrm{Ts}^{-1}$
Moving Charges & Magnetism

153124 A long current carrying wire produces a magnetic field of $1 \mathrm{~T}$ at a distance of $r$. The magnetic field at (A) $\frac{r}{2}$, (B) $2 r$ and (C) $3 r$ is

1 $(\mathrm{A})=2 \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
2 $(\mathrm{A})=3 \mathrm{~T},(\mathrm{~B})=\frac{1}{3} \mathrm{~T},(\mathrm{C})=\frac{1}{6} \mathrm{~T}$
3 $(\mathrm{A})=\frac{3}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{4} \mathrm{~T},(\mathrm{C})=\frac{1}{8} \mathrm{~T}$
4 $(\mathrm{A})=\frac{5}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
Moving Charges & Magnetism

153125 A compass needle oscillates 20 times per minute at a place where the dip is $45^{\circ}$ and the magnetic field is $B_{1}$. The same needle oscillates 30 times per minute at a place where the dip is $30^{\circ}$ and magnetic field is $B_{2}$. Then $B_{1}: B_{2}$ is

1 $9 \sqrt{3}: 4 \sqrt{2}$
2 $4 \sqrt{2}: 9 \sqrt{3}$
3 $3 \sqrt{3}: 2 \sqrt{2}$
4 $2 \sqrt{2}: 3 \sqrt{3}$
Moving Charges & Magnetism

153126 A rectangular coil of length $2 \mathrm{~cm}$ and width $1.25 \mathrm{~cm}$ with 250 turns carries a current of 55 $\mu \mathrm{A}$ and subjected to a magnetic field of strength 0.64 T. Work done for rotating the coil by $180^{\circ}$ against the torque is

1 $2.2 \mu \mathrm{J}$
2 $3.5 \mu \mathrm{J}$
3 $4.4 \mu \mathrm{J}$
4 $5.5 \mu \mathrm{J}$
Moving Charges & Magnetism

153127 An isosceles triangular current carrying loop is kept perpendicularly in a uniform magnetic field $\overrightarrow{\mathrm{B}}_{0}$ as shown in figure. The force on the loop due to magnetic field is

1 $\mathrm{ILB}_{0} \cos \theta$
2 $2 \mathrm{ILB}_{0} \cos \theta$
3 0
4 ILB $_{0} \sin \theta$
Moving Charges & Magnetism

153123 A uniform magnetic field $\vec{B}$ is perpendicular to the plane of a circular loop of diameter $10 \mathrm{~cm}$ formed wire of diameter $2 \mathrm{~mm}$ and resistivity $2 \times 10^{-8} \Omega \mathrm{m}$. If a current of $11 \mathrm{~A}$ is to be induced in the loop then the rate at which $\vec{B}$ is to be changed is

1 $2.8 \mathrm{Ts}^{-1}$
2 $1.4 \mathrm{Ts}^{-1}$
3 $3.2 \mathrm{Ts}^{-1}$
4 $2.4 \mathrm{Ts}^{-1}$
Moving Charges & Magnetism

153124 A long current carrying wire produces a magnetic field of $1 \mathrm{~T}$ at a distance of $r$. The magnetic field at (A) $\frac{r}{2}$, (B) $2 r$ and (C) $3 r$ is

1 $(\mathrm{A})=2 \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
2 $(\mathrm{A})=3 \mathrm{~T},(\mathrm{~B})=\frac{1}{3} \mathrm{~T},(\mathrm{C})=\frac{1}{6} \mathrm{~T}$
3 $(\mathrm{A})=\frac{3}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{4} \mathrm{~T},(\mathrm{C})=\frac{1}{8} \mathrm{~T}$
4 $(\mathrm{A})=\frac{5}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
Moving Charges & Magnetism

153125 A compass needle oscillates 20 times per minute at a place where the dip is $45^{\circ}$ and the magnetic field is $B_{1}$. The same needle oscillates 30 times per minute at a place where the dip is $30^{\circ}$ and magnetic field is $B_{2}$. Then $B_{1}: B_{2}$ is

1 $9 \sqrt{3}: 4 \sqrt{2}$
2 $4 \sqrt{2}: 9 \sqrt{3}$
3 $3 \sqrt{3}: 2 \sqrt{2}$
4 $2 \sqrt{2}: 3 \sqrt{3}$
Moving Charges & Magnetism

153126 A rectangular coil of length $2 \mathrm{~cm}$ and width $1.25 \mathrm{~cm}$ with 250 turns carries a current of 55 $\mu \mathrm{A}$ and subjected to a magnetic field of strength 0.64 T. Work done for rotating the coil by $180^{\circ}$ against the torque is

1 $2.2 \mu \mathrm{J}$
2 $3.5 \mu \mathrm{J}$
3 $4.4 \mu \mathrm{J}$
4 $5.5 \mu \mathrm{J}$
Moving Charges & Magnetism

153127 An isosceles triangular current carrying loop is kept perpendicularly in a uniform magnetic field $\overrightarrow{\mathrm{B}}_{0}$ as shown in figure. The force on the loop due to magnetic field is

1 $\mathrm{ILB}_{0} \cos \theta$
2 $2 \mathrm{ILB}_{0} \cos \theta$
3 0
4 ILB $_{0} \sin \theta$
Moving Charges & Magnetism

153123 A uniform magnetic field $\vec{B}$ is perpendicular to the plane of a circular loop of diameter $10 \mathrm{~cm}$ formed wire of diameter $2 \mathrm{~mm}$ and resistivity $2 \times 10^{-8} \Omega \mathrm{m}$. If a current of $11 \mathrm{~A}$ is to be induced in the loop then the rate at which $\vec{B}$ is to be changed is

1 $2.8 \mathrm{Ts}^{-1}$
2 $1.4 \mathrm{Ts}^{-1}$
3 $3.2 \mathrm{Ts}^{-1}$
4 $2.4 \mathrm{Ts}^{-1}$
Moving Charges & Magnetism

153124 A long current carrying wire produces a magnetic field of $1 \mathrm{~T}$ at a distance of $r$. The magnetic field at (A) $\frac{r}{2}$, (B) $2 r$ and (C) $3 r$ is

1 $(\mathrm{A})=2 \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
2 $(\mathrm{A})=3 \mathrm{~T},(\mathrm{~B})=\frac{1}{3} \mathrm{~T},(\mathrm{C})=\frac{1}{6} \mathrm{~T}$
3 $(\mathrm{A})=\frac{3}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{4} \mathrm{~T},(\mathrm{C})=\frac{1}{8} \mathrm{~T}$
4 $(\mathrm{A})=\frac{5}{2} \mathrm{~T},(\mathrm{~B})=\frac{1}{2} \mathrm{~T},(\mathrm{C})=\frac{1}{3} \mathrm{~T}$
Moving Charges & Magnetism

153125 A compass needle oscillates 20 times per minute at a place where the dip is $45^{\circ}$ and the magnetic field is $B_{1}$. The same needle oscillates 30 times per minute at a place where the dip is $30^{\circ}$ and magnetic field is $B_{2}$. Then $B_{1}: B_{2}$ is

1 $9 \sqrt{3}: 4 \sqrt{2}$
2 $4 \sqrt{2}: 9 \sqrt{3}$
3 $3 \sqrt{3}: 2 \sqrt{2}$
4 $2 \sqrt{2}: 3 \sqrt{3}$
Moving Charges & Magnetism

153126 A rectangular coil of length $2 \mathrm{~cm}$ and width $1.25 \mathrm{~cm}$ with 250 turns carries a current of 55 $\mu \mathrm{A}$ and subjected to a magnetic field of strength 0.64 T. Work done for rotating the coil by $180^{\circ}$ against the torque is

1 $2.2 \mu \mathrm{J}$
2 $3.5 \mu \mathrm{J}$
3 $4.4 \mu \mathrm{J}$
4 $5.5 \mu \mathrm{J}$
Moving Charges & Magnetism

153127 An isosceles triangular current carrying loop is kept perpendicularly in a uniform magnetic field $\overrightarrow{\mathrm{B}}_{0}$ as shown in figure. The force on the loop due to magnetic field is

1 $\mathrm{ILB}_{0} \cos \theta$
2 $2 \mathrm{ILB}_{0} \cos \theta$
3 0
4 ILB $_{0} \sin \theta$