00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153407 A current carrying wire produces in the neighbourhood

1 electric and magnetic fields
2 electric field only
3 magnetic field only
4 no field
Moving Charges & Magnetism

153408 The ultimate individual unit of magnetism in any magnet is called

1 north pole
2 south pole
3 dipole
4 quadrupole
Moving Charges & Magnetism

153115 Match List -I with List -II
| | List-I (current \ltbr> configuration ) | | List-II \ltbr> (magnitude of \ltbr> magnetic field \ltbr> at point O) |
| :--- | :--- | :--- | :--- |
| A. | | I. | $\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}[\pi+2]$ |
| B. | | II. | $\mathrm{B}_0=\frac{\mu_0}{4} \mathrm{I}$ |
| C. | | III. | $\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{2 \pi \mathrm{r}}[\pi-1]$ |
| D. | | IV. |\(\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}[\pi+1]\) |

1 A - I, B - III, C - IV, D - II
2 A - III, B - IV, C - I, D - II
3 A - II, B - I, C - IV, D - III
4 A - III, B - I, C - IV, D - II
Moving Charges & Magnetism

153224 Two thin metallic wires lie on $\mathrm{X}$ and $\mathrm{Y}$ - axes and both carry the same current as shown in the figure below. $A B$ and $C D$ are the two lines making angles $45^{\circ}$ with the axes and the origin of axes in $O$. The magnetic field will be zero

1 on the line $\mathrm{AB}$
2 on the line $\mathrm{CD}$
3 only on part $\mathrm{OB}$ of the line $\mathrm{AB}$
4 only on part $\mathrm{OC}$ of the line $\mathrm{CD}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153407 A current carrying wire produces in the neighbourhood

1 electric and magnetic fields
2 electric field only
3 magnetic field only
4 no field
Moving Charges & Magnetism

153408 The ultimate individual unit of magnetism in any magnet is called

1 north pole
2 south pole
3 dipole
4 quadrupole
Moving Charges & Magnetism

153115 Match List -I with List -II
| | List-I (current \ltbr> configuration ) | | List-II \ltbr> (magnitude of \ltbr> magnetic field \ltbr> at point O) |
| :--- | :--- | :--- | :--- |
| A. | | I. | $\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}[\pi+2]$ |
| B. | | II. | $\mathrm{B}_0=\frac{\mu_0}{4} \mathrm{I}$ |
| C. | | III. | $\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{2 \pi \mathrm{r}}[\pi-1]$ |
| D. | | IV. |\(\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}[\pi+1]\) |

1 A - I, B - III, C - IV, D - II
2 A - III, B - IV, C - I, D - II
3 A - II, B - I, C - IV, D - III
4 A - III, B - I, C - IV, D - II
Moving Charges & Magnetism

153224 Two thin metallic wires lie on $\mathrm{X}$ and $\mathrm{Y}$ - axes and both carry the same current as shown in the figure below. $A B$ and $C D$ are the two lines making angles $45^{\circ}$ with the axes and the origin of axes in $O$. The magnetic field will be zero

1 on the line $\mathrm{AB}$
2 on the line $\mathrm{CD}$
3 only on part $\mathrm{OB}$ of the line $\mathrm{AB}$
4 only on part $\mathrm{OC}$ of the line $\mathrm{CD}$
Moving Charges & Magnetism

153407 A current carrying wire produces in the neighbourhood

1 electric and magnetic fields
2 electric field only
3 magnetic field only
4 no field
Moving Charges & Magnetism

153408 The ultimate individual unit of magnetism in any magnet is called

1 north pole
2 south pole
3 dipole
4 quadrupole
Moving Charges & Magnetism

153115 Match List -I with List -II
| | List-I (current \ltbr> configuration ) | | List-II \ltbr> (magnitude of \ltbr> magnetic field \ltbr> at point O) |
| :--- | :--- | :--- | :--- |
| A. | | I. | $\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}[\pi+2]$ |
| B. | | II. | $\mathrm{B}_0=\frac{\mu_0}{4} \mathrm{I}$ |
| C. | | III. | $\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{2 \pi \mathrm{r}}[\pi-1]$ |
| D. | | IV. |\(\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}[\pi+1]\) |

1 A - I, B - III, C - IV, D - II
2 A - III, B - IV, C - I, D - II
3 A - II, B - I, C - IV, D - III
4 A - III, B - I, C - IV, D - II
Moving Charges & Magnetism

153224 Two thin metallic wires lie on $\mathrm{X}$ and $\mathrm{Y}$ - axes and both carry the same current as shown in the figure below. $A B$ and $C D$ are the two lines making angles $45^{\circ}$ with the axes and the origin of axes in $O$. The magnetic field will be zero

1 on the line $\mathrm{AB}$
2 on the line $\mathrm{CD}$
3 only on part $\mathrm{OB}$ of the line $\mathrm{AB}$
4 only on part $\mathrm{OC}$ of the line $\mathrm{CD}$
Moving Charges & Magnetism

153407 A current carrying wire produces in the neighbourhood

1 electric and magnetic fields
2 electric field only
3 magnetic field only
4 no field
Moving Charges & Magnetism

153408 The ultimate individual unit of magnetism in any magnet is called

1 north pole
2 south pole
3 dipole
4 quadrupole
Moving Charges & Magnetism

153115 Match List -I with List -II
| | List-I (current \ltbr> configuration ) | | List-II \ltbr> (magnitude of \ltbr> magnetic field \ltbr> at point O) |
| :--- | :--- | :--- | :--- |
| A. | | I. | $\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}[\pi+2]$ |
| B. | | II. | $\mathrm{B}_0=\frac{\mu_0}{4} \mathrm{I}$ |
| C. | | III. | $\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{2 \pi \mathrm{r}}[\pi-1]$ |
| D. | | IV. |\(\mathrm{B}_0=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}[\pi+1]\) |

1 A - I, B - III, C - IV, D - II
2 A - III, B - IV, C - I, D - II
3 A - II, B - I, C - IV, D - III
4 A - III, B - I, C - IV, D - II
Moving Charges & Magnetism

153224 Two thin metallic wires lie on $\mathrm{X}$ and $\mathrm{Y}$ - axes and both carry the same current as shown in the figure below. $A B$ and $C D$ are the two lines making angles $45^{\circ}$ with the axes and the origin of axes in $O$. The magnetic field will be zero

1 on the line $\mathrm{AB}$
2 on the line $\mathrm{CD}$
3 only on part $\mathrm{OB}$ of the line $\mathrm{AB}$
4 only on part $\mathrm{OC}$ of the line $\mathrm{CD}$