00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153405 Two thin long parallel wires separated by a distance $b$ are carrying a current $I$ amperes each. The magnitude of the force per unit length exerted by one wire on the other is

1 $\frac{\mu_{0} I^{2}}{b^{2}}$
2 $\frac{\mu_{0} I^{2}}{2 \pi b}$
3 $\frac{\mu_{0} I}{2 \pi b}$
4 $\frac{\mu_{0} \mathrm{I}^{2}}{2 \pi \mathrm{b}^{2}}$
Moving Charges & Magnetism

153406 The magnetic field at the center of current $I$ carrying loop of radius $r$, is

1 $\frac{\mu_{0} I}{2 r}$
2 $\frac{\mu_{0}}{2 \pi} \frac{\mathrm{I}}{\mathrm{r}}$
3 $\frac{\mu_{0} I}{r}$
4 $\mu_{0} \mathrm{nI}$
Moving Charges & Magnetism

153234 A current carrying wire in its neighborhood produces

1 electric field
2 electric and magnetic fields
3 magnetic field
4 no field
Moving Charges & Magnetism

153165 The magnetic field at the origin due to a current element $i . \mathrm{d} l$ placed at a point with vector position $r$
The correct Biot-Savart law in vector form is :

1 $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{d} l \times \overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}$
2 $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{r} \times \mathrm{d} l}{\mathrm{r}^{3}}$
3 $\frac{\mu_{0} \mathrm{i}}{4 \pi} \frac{\mathrm{d} l \times \overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}$
4 $\frac{\mu_{0} \mathrm{i}}{4 \pi} \frac{\mathrm{r} \times \mathrm{d} l}{\mathrm{r}^{2}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Moving Charges & Magnetism

153405 Two thin long parallel wires separated by a distance $b$ are carrying a current $I$ amperes each. The magnitude of the force per unit length exerted by one wire on the other is

1 $\frac{\mu_{0} I^{2}}{b^{2}}$
2 $\frac{\mu_{0} I^{2}}{2 \pi b}$
3 $\frac{\mu_{0} I}{2 \pi b}$
4 $\frac{\mu_{0} \mathrm{I}^{2}}{2 \pi \mathrm{b}^{2}}$
Moving Charges & Magnetism

153406 The magnetic field at the center of current $I$ carrying loop of radius $r$, is

1 $\frac{\mu_{0} I}{2 r}$
2 $\frac{\mu_{0}}{2 \pi} \frac{\mathrm{I}}{\mathrm{r}}$
3 $\frac{\mu_{0} I}{r}$
4 $\mu_{0} \mathrm{nI}$
Moving Charges & Magnetism

153234 A current carrying wire in its neighborhood produces

1 electric field
2 electric and magnetic fields
3 magnetic field
4 no field
Moving Charges & Magnetism

153165 The magnetic field at the origin due to a current element $i . \mathrm{d} l$ placed at a point with vector position $r$
The correct Biot-Savart law in vector form is :

1 $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{d} l \times \overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}$
2 $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{r} \times \mathrm{d} l}{\mathrm{r}^{3}}$
3 $\frac{\mu_{0} \mathrm{i}}{4 \pi} \frac{\mathrm{d} l \times \overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}$
4 $\frac{\mu_{0} \mathrm{i}}{4 \pi} \frac{\mathrm{r} \times \mathrm{d} l}{\mathrm{r}^{2}}$
Moving Charges & Magnetism

153405 Two thin long parallel wires separated by a distance $b$ are carrying a current $I$ amperes each. The magnitude of the force per unit length exerted by one wire on the other is

1 $\frac{\mu_{0} I^{2}}{b^{2}}$
2 $\frac{\mu_{0} I^{2}}{2 \pi b}$
3 $\frac{\mu_{0} I}{2 \pi b}$
4 $\frac{\mu_{0} \mathrm{I}^{2}}{2 \pi \mathrm{b}^{2}}$
Moving Charges & Magnetism

153406 The magnetic field at the center of current $I$ carrying loop of radius $r$, is

1 $\frac{\mu_{0} I}{2 r}$
2 $\frac{\mu_{0}}{2 \pi} \frac{\mathrm{I}}{\mathrm{r}}$
3 $\frac{\mu_{0} I}{r}$
4 $\mu_{0} \mathrm{nI}$
Moving Charges & Magnetism

153234 A current carrying wire in its neighborhood produces

1 electric field
2 electric and magnetic fields
3 magnetic field
4 no field
Moving Charges & Magnetism

153165 The magnetic field at the origin due to a current element $i . \mathrm{d} l$ placed at a point with vector position $r$
The correct Biot-Savart law in vector form is :

1 $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{d} l \times \overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}$
2 $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{r} \times \mathrm{d} l}{\mathrm{r}^{3}}$
3 $\frac{\mu_{0} \mathrm{i}}{4 \pi} \frac{\mathrm{d} l \times \overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}$
4 $\frac{\mu_{0} \mathrm{i}}{4 \pi} \frac{\mathrm{r} \times \mathrm{d} l}{\mathrm{r}^{2}}$
Moving Charges & Magnetism

153405 Two thin long parallel wires separated by a distance $b$ are carrying a current $I$ amperes each. The magnitude of the force per unit length exerted by one wire on the other is

1 $\frac{\mu_{0} I^{2}}{b^{2}}$
2 $\frac{\mu_{0} I^{2}}{2 \pi b}$
3 $\frac{\mu_{0} I}{2 \pi b}$
4 $\frac{\mu_{0} \mathrm{I}^{2}}{2 \pi \mathrm{b}^{2}}$
Moving Charges & Magnetism

153406 The magnetic field at the center of current $I$ carrying loop of radius $r$, is

1 $\frac{\mu_{0} I}{2 r}$
2 $\frac{\mu_{0}}{2 \pi} \frac{\mathrm{I}}{\mathrm{r}}$
3 $\frac{\mu_{0} I}{r}$
4 $\mu_{0} \mathrm{nI}$
Moving Charges & Magnetism

153234 A current carrying wire in its neighborhood produces

1 electric field
2 electric and magnetic fields
3 magnetic field
4 no field
Moving Charges & Magnetism

153165 The magnetic field at the origin due to a current element $i . \mathrm{d} l$ placed at a point with vector position $r$
The correct Biot-Savart law in vector form is :

1 $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{d} l \times \overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}$
2 $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{r} \times \mathrm{d} l}{\mathrm{r}^{3}}$
3 $\frac{\mu_{0} \mathrm{i}}{4 \pi} \frac{\mathrm{d} l \times \overrightarrow{\mathrm{r}}}{\mathrm{r}^{2}}$
4 $\frac{\mu_{0} \mathrm{i}}{4 \pi} \frac{\mathrm{r} \times \mathrm{d} l}{\mathrm{r}^{2}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here