00. Biot-Savart's Law and Magnetic Field, Lorentz Force
Moving Charges & Magnetism

153386 Electron moves at right angles to a magnetic field of $1.5 \times 10^{-2}$ tesla with speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge of the electron is $1.7 \times$ $10^{11} \mathrm{C} / \mathrm{kg}$. The radius of circular path will be

1 $3.31 \mathrm{~cm}$
2 $4.31 \mathrm{~cm}$
3 $1.31 \mathrm{~cm}$
4 $2.35 \mathrm{~cm}$
Moving Charges & Magnetism

153389 A straight wire of mass $300 \mathrm{~g}$ and length $2.5 \mathrm{~m}$ carries a current of $3.5 \mathrm{~A}$. It is suspended in mid-air by a uniform horizontal magnetic field $B$. What is the magnitude of the magnetic field?

1 $0.654 \mathrm{~T}$
2 $0.336 \mathrm{~T}$
3 $1.576 \mathrm{~T}$
4 $0.939 \mathrm{~T}$
Moving Charges & Magnetism

153399 Magnetic field due to $0.1 \mathrm{~A}$ current flowing through a circular coil of radius $0.1 \mathrm{~m}$ and 1000 turns at the centre of the coil is

1 $0.2 \mathrm{~T}$
2 $2 \times 10^{-4} \mathrm{~T}$
3 $6.28 \times 10^{-4} \mathrm{~T}$
4 $9.8 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153401 Two wires are held perpendicular to the plane of paper and are $5 \mathrm{~m}$ apart. They carry currents of $2.5 \mathrm{~A}$ and $5 \mathrm{~A}$ in same direction. Then, the magnetic field strength $(B)$ at a point midway between the wires will be

1 $\frac{\mu_{0}}{4 \pi} \mathrm{T}$
2 $\frac{\mu_{0}}{2 \pi} \mathrm{T}$
3 $\frac{3 \mu_{0}}{2 \pi} \mathrm{T}$
4 $\frac{3 \mu_{0}}{4 \pi} \mathrm{T}$
Moving Charges & Magnetism

153386 Electron moves at right angles to a magnetic field of $1.5 \times 10^{-2}$ tesla with speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge of the electron is $1.7 \times$ $10^{11} \mathrm{C} / \mathrm{kg}$. The radius of circular path will be

1 $3.31 \mathrm{~cm}$
2 $4.31 \mathrm{~cm}$
3 $1.31 \mathrm{~cm}$
4 $2.35 \mathrm{~cm}$
Moving Charges & Magnetism

153389 A straight wire of mass $300 \mathrm{~g}$ and length $2.5 \mathrm{~m}$ carries a current of $3.5 \mathrm{~A}$. It is suspended in mid-air by a uniform horizontal magnetic field $B$. What is the magnitude of the magnetic field?

1 $0.654 \mathrm{~T}$
2 $0.336 \mathrm{~T}$
3 $1.576 \mathrm{~T}$
4 $0.939 \mathrm{~T}$
Moving Charges & Magnetism

153399 Magnetic field due to $0.1 \mathrm{~A}$ current flowing through a circular coil of radius $0.1 \mathrm{~m}$ and 1000 turns at the centre of the coil is

1 $0.2 \mathrm{~T}$
2 $2 \times 10^{-4} \mathrm{~T}$
3 $6.28 \times 10^{-4} \mathrm{~T}$
4 $9.8 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153401 Two wires are held perpendicular to the plane of paper and are $5 \mathrm{~m}$ apart. They carry currents of $2.5 \mathrm{~A}$ and $5 \mathrm{~A}$ in same direction. Then, the magnetic field strength $(B)$ at a point midway between the wires will be

1 $\frac{\mu_{0}}{4 \pi} \mathrm{T}$
2 $\frac{\mu_{0}}{2 \pi} \mathrm{T}$
3 $\frac{3 \mu_{0}}{2 \pi} \mathrm{T}$
4 $\frac{3 \mu_{0}}{4 \pi} \mathrm{T}$
Moving Charges & Magnetism

153386 Electron moves at right angles to a magnetic field of $1.5 \times 10^{-2}$ tesla with speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge of the electron is $1.7 \times$ $10^{11} \mathrm{C} / \mathrm{kg}$. The radius of circular path will be

1 $3.31 \mathrm{~cm}$
2 $4.31 \mathrm{~cm}$
3 $1.31 \mathrm{~cm}$
4 $2.35 \mathrm{~cm}$
Moving Charges & Magnetism

153389 A straight wire of mass $300 \mathrm{~g}$ and length $2.5 \mathrm{~m}$ carries a current of $3.5 \mathrm{~A}$. It is suspended in mid-air by a uniform horizontal magnetic field $B$. What is the magnitude of the magnetic field?

1 $0.654 \mathrm{~T}$
2 $0.336 \mathrm{~T}$
3 $1.576 \mathrm{~T}$
4 $0.939 \mathrm{~T}$
Moving Charges & Magnetism

153399 Magnetic field due to $0.1 \mathrm{~A}$ current flowing through a circular coil of radius $0.1 \mathrm{~m}$ and 1000 turns at the centre of the coil is

1 $0.2 \mathrm{~T}$
2 $2 \times 10^{-4} \mathrm{~T}$
3 $6.28 \times 10^{-4} \mathrm{~T}$
4 $9.8 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153401 Two wires are held perpendicular to the plane of paper and are $5 \mathrm{~m}$ apart. They carry currents of $2.5 \mathrm{~A}$ and $5 \mathrm{~A}$ in same direction. Then, the magnetic field strength $(B)$ at a point midway between the wires will be

1 $\frac{\mu_{0}}{4 \pi} \mathrm{T}$
2 $\frac{\mu_{0}}{2 \pi} \mathrm{T}$
3 $\frac{3 \mu_{0}}{2 \pi} \mathrm{T}$
4 $\frac{3 \mu_{0}}{4 \pi} \mathrm{T}$
Moving Charges & Magnetism

153386 Electron moves at right angles to a magnetic field of $1.5 \times 10^{-2}$ tesla with speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge of the electron is $1.7 \times$ $10^{11} \mathrm{C} / \mathrm{kg}$. The radius of circular path will be

1 $3.31 \mathrm{~cm}$
2 $4.31 \mathrm{~cm}$
3 $1.31 \mathrm{~cm}$
4 $2.35 \mathrm{~cm}$
Moving Charges & Magnetism

153389 A straight wire of mass $300 \mathrm{~g}$ and length $2.5 \mathrm{~m}$ carries a current of $3.5 \mathrm{~A}$. It is suspended in mid-air by a uniform horizontal magnetic field $B$. What is the magnitude of the magnetic field?

1 $0.654 \mathrm{~T}$
2 $0.336 \mathrm{~T}$
3 $1.576 \mathrm{~T}$
4 $0.939 \mathrm{~T}$
Moving Charges & Magnetism

153399 Magnetic field due to $0.1 \mathrm{~A}$ current flowing through a circular coil of radius $0.1 \mathrm{~m}$ and 1000 turns at the centre of the coil is

1 $0.2 \mathrm{~T}$
2 $2 \times 10^{-4} \mathrm{~T}$
3 $6.28 \times 10^{-4} \mathrm{~T}$
4 $9.8 \times 10^{-4} \mathrm{~T}$
Moving Charges & Magnetism

153401 Two wires are held perpendicular to the plane of paper and are $5 \mathrm{~m}$ apart. They carry currents of $2.5 \mathrm{~A}$ and $5 \mathrm{~A}$ in same direction. Then, the magnetic field strength $(B)$ at a point midway between the wires will be

1 $\frac{\mu_{0}}{4 \pi} \mathrm{T}$
2 $\frac{\mu_{0}}{2 \pi} \mathrm{T}$
3 $\frac{3 \mu_{0}}{2 \pi} \mathrm{T}$
4 $\frac{3 \mu_{0}}{4 \pi} \mathrm{T}$