07. RC circuit (Charging, Time Constant, Discharging)
Current Electricity

153096 Given,
$\mathrm{R}_{1}=1 \Omega \mathrm{C}_{1}=2 \mu \mathrm{F}$
$\mathrm{R}_{2}=2 \Omega \mathrm{C}_{2}=4 \mu \mathrm{F}$

The time constant (in $\mu$ s) for the circuits I, II, III are respectively

1 $18,8 / 9,4$
2 $18,4,8 / 9$
3 $4,8 / 9,18$
4 $8 / 9,18,4$
Current Electricity

153097 The time constant of $L-R$ circuited is

1 $\mathrm{L} / \mathrm{R}$
2 $\mathrm{R} / \mathrm{L}$
3 $1 / \mathrm{RL}$
4 RL
Current Electricity

153099 Two identical capacitors each of capacitance $C$ are charged to the same potential $V$ and are connected in two circuits (i) and (ii) at $t=0$ as shown. The charged on the capacitor at $t=C R$ are

1 $\frac{\mathrm{CV}}{\mathrm{e}}, \frac{\mathrm{CV}}{\mathrm{e}}$
2 $\mathrm{CV}, \mathrm{CV}$
3 $\frac{\mathrm{VC}}{\mathrm{e}}, \mathrm{VC}$
4 $\mathrm{VC}, \frac{\mathrm{VC}}{\mathrm{e}}$
Current Electricity

153100 Taking the internal resistance of the battery as negligible, the steady state current in the $2 \Omega$ resistor shown in the figure will be

1 $1.8 \mathrm{~A}$
2 $2.9 \mathrm{~A}$
3 $0.9 \mathrm{~A}$
4 $2.8 \mathrm{~A}$
Current Electricity

153096 Given,
$\mathrm{R}_{1}=1 \Omega \mathrm{C}_{1}=2 \mu \mathrm{F}$
$\mathrm{R}_{2}=2 \Omega \mathrm{C}_{2}=4 \mu \mathrm{F}$

The time constant (in $\mu$ s) for the circuits I, II, III are respectively

1 $18,8 / 9,4$
2 $18,4,8 / 9$
3 $4,8 / 9,18$
4 $8 / 9,18,4$
Current Electricity

153097 The time constant of $L-R$ circuited is

1 $\mathrm{L} / \mathrm{R}$
2 $\mathrm{R} / \mathrm{L}$
3 $1 / \mathrm{RL}$
4 RL
Current Electricity

153099 Two identical capacitors each of capacitance $C$ are charged to the same potential $V$ and are connected in two circuits (i) and (ii) at $t=0$ as shown. The charged on the capacitor at $t=C R$ are

1 $\frac{\mathrm{CV}}{\mathrm{e}}, \frac{\mathrm{CV}}{\mathrm{e}}$
2 $\mathrm{CV}, \mathrm{CV}$
3 $\frac{\mathrm{VC}}{\mathrm{e}}, \mathrm{VC}$
4 $\mathrm{VC}, \frac{\mathrm{VC}}{\mathrm{e}}$
Current Electricity

153100 Taking the internal resistance of the battery as negligible, the steady state current in the $2 \Omega$ resistor shown in the figure will be

1 $1.8 \mathrm{~A}$
2 $2.9 \mathrm{~A}$
3 $0.9 \mathrm{~A}$
4 $2.8 \mathrm{~A}$
Current Electricity

153096 Given,
$\mathrm{R}_{1}=1 \Omega \mathrm{C}_{1}=2 \mu \mathrm{F}$
$\mathrm{R}_{2}=2 \Omega \mathrm{C}_{2}=4 \mu \mathrm{F}$

The time constant (in $\mu$ s) for the circuits I, II, III are respectively

1 $18,8 / 9,4$
2 $18,4,8 / 9$
3 $4,8 / 9,18$
4 $8 / 9,18,4$
Current Electricity

153097 The time constant of $L-R$ circuited is

1 $\mathrm{L} / \mathrm{R}$
2 $\mathrm{R} / \mathrm{L}$
3 $1 / \mathrm{RL}$
4 RL
Current Electricity

153099 Two identical capacitors each of capacitance $C$ are charged to the same potential $V$ and are connected in two circuits (i) and (ii) at $t=0$ as shown. The charged on the capacitor at $t=C R$ are

1 $\frac{\mathrm{CV}}{\mathrm{e}}, \frac{\mathrm{CV}}{\mathrm{e}}$
2 $\mathrm{CV}, \mathrm{CV}$
3 $\frac{\mathrm{VC}}{\mathrm{e}}, \mathrm{VC}$
4 $\mathrm{VC}, \frac{\mathrm{VC}}{\mathrm{e}}$
Current Electricity

153100 Taking the internal resistance of the battery as negligible, the steady state current in the $2 \Omega$ resistor shown in the figure will be

1 $1.8 \mathrm{~A}$
2 $2.9 \mathrm{~A}$
3 $0.9 \mathrm{~A}$
4 $2.8 \mathrm{~A}$
Current Electricity

153096 Given,
$\mathrm{R}_{1}=1 \Omega \mathrm{C}_{1}=2 \mu \mathrm{F}$
$\mathrm{R}_{2}=2 \Omega \mathrm{C}_{2}=4 \mu \mathrm{F}$

The time constant (in $\mu$ s) for the circuits I, II, III are respectively

1 $18,8 / 9,4$
2 $18,4,8 / 9$
3 $4,8 / 9,18$
4 $8 / 9,18,4$
Current Electricity

153097 The time constant of $L-R$ circuited is

1 $\mathrm{L} / \mathrm{R}$
2 $\mathrm{R} / \mathrm{L}$
3 $1 / \mathrm{RL}$
4 RL
Current Electricity

153099 Two identical capacitors each of capacitance $C$ are charged to the same potential $V$ and are connected in two circuits (i) and (ii) at $t=0$ as shown. The charged on the capacitor at $t=C R$ are

1 $\frac{\mathrm{CV}}{\mathrm{e}}, \frac{\mathrm{CV}}{\mathrm{e}}$
2 $\mathrm{CV}, \mathrm{CV}$
3 $\frac{\mathrm{VC}}{\mathrm{e}}, \mathrm{VC}$
4 $\mathrm{VC}, \frac{\mathrm{VC}}{\mathrm{e}}$
Current Electricity

153100 Taking the internal resistance of the battery as negligible, the steady state current in the $2 \Omega$ resistor shown in the figure will be

1 $1.8 \mathrm{~A}$
2 $2.9 \mathrm{~A}$
3 $0.9 \mathrm{~A}$
4 $2.8 \mathrm{~A}$