05. Heating Effect of Current (Energy, Power)
Current Electricity

152645 The power of two electric bulbs age $P_{1}$ and $P_{2}$ respectively. If they are connected in series, then power of the combination will be

1 $\mathrm{P}_{1}+\mathrm{P}_{2}$
2 $\sqrt{\mathrm{P}_{1} \mathrm{P}_{2}}$
3 $\frac{\mathrm{P}_{1}^{2}+\mathrm{P}_{2}^{2}}{\sqrt{\mathrm{P}_{1} \mathrm{P}_{2}}}$
4 $\frac{\mathrm{P}_{1} \mathrm{P}_{2}}{\mathrm{P}_{1}+\mathrm{P}_{2}}$
Current Electricity

152646 A direct current of $4 \mathrm{~A}$ and an alternating current of peak value flow through resistance of $3 \Omega$ and $2 \Omega$ respectively. The ratio of heat produced in the two resistances in same interval of time will be:

1 $3: 2$
2 $3: 1$
3 $3: 4$
4 $4: 3$
Current Electricity

152647 A bulb of power $660 \mathrm{~W}$ radiates uniformly in all directions. The pressure exerted by the radiation on the surface at a distance of $5 \mathrm{~m}$ is

1 $5 \times 10^{-8} \mathrm{~Pa}$
2 $2 \times 10^{-9} \mathrm{~Pa}$
3 $7 \times 10^{-9} \mathrm{~Pa}$
4 $\frac{3}{\pi} \times 10^{-8} \mathrm{~Pa}$
Current Electricity

152648
In the above circuit, the heat produced in $5 \Omega$ resistance is 10 calories per second. The heat produced in $4 \Omega$ resistance is

1 $1 \mathrm{cal} / \mathrm{sec}$.
2 $2 \mathrm{cal} / \mathrm{sec}$.
3 $3 \mathrm{cal} / \mathrm{sec}$.
4 $4 \mathrm{cal} / \mathrm{sec}$.
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

152645 The power of two electric bulbs age $P_{1}$ and $P_{2}$ respectively. If they are connected in series, then power of the combination will be

1 $\mathrm{P}_{1}+\mathrm{P}_{2}$
2 $\sqrt{\mathrm{P}_{1} \mathrm{P}_{2}}$
3 $\frac{\mathrm{P}_{1}^{2}+\mathrm{P}_{2}^{2}}{\sqrt{\mathrm{P}_{1} \mathrm{P}_{2}}}$
4 $\frac{\mathrm{P}_{1} \mathrm{P}_{2}}{\mathrm{P}_{1}+\mathrm{P}_{2}}$
Current Electricity

152646 A direct current of $4 \mathrm{~A}$ and an alternating current of peak value flow through resistance of $3 \Omega$ and $2 \Omega$ respectively. The ratio of heat produced in the two resistances in same interval of time will be:

1 $3: 2$
2 $3: 1$
3 $3: 4$
4 $4: 3$
Current Electricity

152647 A bulb of power $660 \mathrm{~W}$ radiates uniformly in all directions. The pressure exerted by the radiation on the surface at a distance of $5 \mathrm{~m}$ is

1 $5 \times 10^{-8} \mathrm{~Pa}$
2 $2 \times 10^{-9} \mathrm{~Pa}$
3 $7 \times 10^{-9} \mathrm{~Pa}$
4 $\frac{3}{\pi} \times 10^{-8} \mathrm{~Pa}$
Current Electricity

152648
In the above circuit, the heat produced in $5 \Omega$ resistance is 10 calories per second. The heat produced in $4 \Omega$ resistance is

1 $1 \mathrm{cal} / \mathrm{sec}$.
2 $2 \mathrm{cal} / \mathrm{sec}$.
3 $3 \mathrm{cal} / \mathrm{sec}$.
4 $4 \mathrm{cal} / \mathrm{sec}$.
Current Electricity

152645 The power of two electric bulbs age $P_{1}$ and $P_{2}$ respectively. If they are connected in series, then power of the combination will be

1 $\mathrm{P}_{1}+\mathrm{P}_{2}$
2 $\sqrt{\mathrm{P}_{1} \mathrm{P}_{2}}$
3 $\frac{\mathrm{P}_{1}^{2}+\mathrm{P}_{2}^{2}}{\sqrt{\mathrm{P}_{1} \mathrm{P}_{2}}}$
4 $\frac{\mathrm{P}_{1} \mathrm{P}_{2}}{\mathrm{P}_{1}+\mathrm{P}_{2}}$
Current Electricity

152646 A direct current of $4 \mathrm{~A}$ and an alternating current of peak value flow through resistance of $3 \Omega$ and $2 \Omega$ respectively. The ratio of heat produced in the two resistances in same interval of time will be:

1 $3: 2$
2 $3: 1$
3 $3: 4$
4 $4: 3$
Current Electricity

152647 A bulb of power $660 \mathrm{~W}$ radiates uniformly in all directions. The pressure exerted by the radiation on the surface at a distance of $5 \mathrm{~m}$ is

1 $5 \times 10^{-8} \mathrm{~Pa}$
2 $2 \times 10^{-9} \mathrm{~Pa}$
3 $7 \times 10^{-9} \mathrm{~Pa}$
4 $\frac{3}{\pi} \times 10^{-8} \mathrm{~Pa}$
Current Electricity

152648
In the above circuit, the heat produced in $5 \Omega$ resistance is 10 calories per second. The heat produced in $4 \Omega$ resistance is

1 $1 \mathrm{cal} / \mathrm{sec}$.
2 $2 \mathrm{cal} / \mathrm{sec}$.
3 $3 \mathrm{cal} / \mathrm{sec}$.
4 $4 \mathrm{cal} / \mathrm{sec}$.
Current Electricity

152645 The power of two electric bulbs age $P_{1}$ and $P_{2}$ respectively. If they are connected in series, then power of the combination will be

1 $\mathrm{P}_{1}+\mathrm{P}_{2}$
2 $\sqrt{\mathrm{P}_{1} \mathrm{P}_{2}}$
3 $\frac{\mathrm{P}_{1}^{2}+\mathrm{P}_{2}^{2}}{\sqrt{\mathrm{P}_{1} \mathrm{P}_{2}}}$
4 $\frac{\mathrm{P}_{1} \mathrm{P}_{2}}{\mathrm{P}_{1}+\mathrm{P}_{2}}$
Current Electricity

152646 A direct current of $4 \mathrm{~A}$ and an alternating current of peak value flow through resistance of $3 \Omega$ and $2 \Omega$ respectively. The ratio of heat produced in the two resistances in same interval of time will be:

1 $3: 2$
2 $3: 1$
3 $3: 4$
4 $4: 3$
Current Electricity

152647 A bulb of power $660 \mathrm{~W}$ radiates uniformly in all directions. The pressure exerted by the radiation on the surface at a distance of $5 \mathrm{~m}$ is

1 $5 \times 10^{-8} \mathrm{~Pa}$
2 $2 \times 10^{-9} \mathrm{~Pa}$
3 $7 \times 10^{-9} \mathrm{~Pa}$
4 $\frac{3}{\pi} \times 10^{-8} \mathrm{~Pa}$
Current Electricity

152648
In the above circuit, the heat produced in $5 \Omega$ resistance is 10 calories per second. The heat produced in $4 \Omega$ resistance is

1 $1 \mathrm{cal} / \mathrm{sec}$.
2 $2 \mathrm{cal} / \mathrm{sec}$.
3 $3 \mathrm{cal} / \mathrm{sec}$.
4 $4 \mathrm{cal} / \mathrm{sec}$.