151955
The resistance of a resistance thermometer have values 2.71 and $3.70 \mathrm{ohms}$ at $10^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. The temperature at which the resistance is $3.26 \mathrm{ohm}$ is
C Using Kirchhoff's voltage law, $10 \mathrm{i}-5+20 \mathrm{i}+2=0$ $30 \mathrm{i}=3$ $\mathrm{i}=0.1 \mathrm{~A}$
JCECE-2010
Current Electricity
151958
A resistor is constructed as hollow cylinder of dimensions $r_{a}=0.5 \mathrm{~cm}$ and $r_{b}=1.0 \mathrm{~cm}$ and $\rho=$ $3.5 \times 10^{-5} \Omega \mathrm{m}$. The resistance of the configuration for the length of $5 \mathrm{~cm}$ cylinder is $\times 10^{-3} \Omega$
151959
Two copper wires, one of length $1 \mathrm{~m}$ and the other of length $9 \mathrm{~m}$ have the same resistance. The diameters are in the ratio
1 $3: 1$
2 $1: 3$
3 $9: 1$
4 $1: 9$
Explanation:
B Given $l_{1}=1 \mathrm{~m}$ $l_{2}=9 \mathrm{~m}$ Resistivity $\mathrm{R}=\frac{\rho \cdot l}{\mathrm{~A}}$ Where $\rho$ is the resistivity of the material $\mathrm{R}_{1} =\frac{\rho l_{1}}{\mathrm{~A}_{1}}$ $\mathrm{R}_{2} =\frac{\rho l_{2}}{\mathrm{~A}_{2}} \quad \ldots . .(\mathrm{i})$ $\frac{\rho l_{1}}{\mathrm{~A}_{1}} =\frac{\rho l_{2}}{\mathrm{~A}_{2}}$ $\frac{\mathrm{D}_{1}^{2}}{\mathrm{D}_{2}^{2}} =\frac{l_{1}}{l_{2}}$ $\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}} =\sqrt{\frac{1}{9}}$ $\mathrm{D}_{1} : \mathrm{D}_{2}=1: 3 \quad\left(\because \mathrm{A}=\frac{\pi \mathrm{D}^{2}}{4}\right)$ Hence the diameter are in the Ratio is $1: 3$
151955
The resistance of a resistance thermometer have values 2.71 and $3.70 \mathrm{ohms}$ at $10^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. The temperature at which the resistance is $3.26 \mathrm{ohm}$ is
C Using Kirchhoff's voltage law, $10 \mathrm{i}-5+20 \mathrm{i}+2=0$ $30 \mathrm{i}=3$ $\mathrm{i}=0.1 \mathrm{~A}$
JCECE-2010
Current Electricity
151958
A resistor is constructed as hollow cylinder of dimensions $r_{a}=0.5 \mathrm{~cm}$ and $r_{b}=1.0 \mathrm{~cm}$ and $\rho=$ $3.5 \times 10^{-5} \Omega \mathrm{m}$. The resistance of the configuration for the length of $5 \mathrm{~cm}$ cylinder is $\times 10^{-3} \Omega$
151959
Two copper wires, one of length $1 \mathrm{~m}$ and the other of length $9 \mathrm{~m}$ have the same resistance. The diameters are in the ratio
1 $3: 1$
2 $1: 3$
3 $9: 1$
4 $1: 9$
Explanation:
B Given $l_{1}=1 \mathrm{~m}$ $l_{2}=9 \mathrm{~m}$ Resistivity $\mathrm{R}=\frac{\rho \cdot l}{\mathrm{~A}}$ Where $\rho$ is the resistivity of the material $\mathrm{R}_{1} =\frac{\rho l_{1}}{\mathrm{~A}_{1}}$ $\mathrm{R}_{2} =\frac{\rho l_{2}}{\mathrm{~A}_{2}} \quad \ldots . .(\mathrm{i})$ $\frac{\rho l_{1}}{\mathrm{~A}_{1}} =\frac{\rho l_{2}}{\mathrm{~A}_{2}}$ $\frac{\mathrm{D}_{1}^{2}}{\mathrm{D}_{2}^{2}} =\frac{l_{1}}{l_{2}}$ $\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}} =\sqrt{\frac{1}{9}}$ $\mathrm{D}_{1} : \mathrm{D}_{2}=1: 3 \quad\left(\because \mathrm{A}=\frac{\pi \mathrm{D}^{2}}{4}\right)$ Hence the diameter are in the Ratio is $1: 3$
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Current Electricity
151955
The resistance of a resistance thermometer have values 2.71 and $3.70 \mathrm{ohms}$ at $10^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. The temperature at which the resistance is $3.26 \mathrm{ohm}$ is
C Using Kirchhoff's voltage law, $10 \mathrm{i}-5+20 \mathrm{i}+2=0$ $30 \mathrm{i}=3$ $\mathrm{i}=0.1 \mathrm{~A}$
JCECE-2010
Current Electricity
151958
A resistor is constructed as hollow cylinder of dimensions $r_{a}=0.5 \mathrm{~cm}$ and $r_{b}=1.0 \mathrm{~cm}$ and $\rho=$ $3.5 \times 10^{-5} \Omega \mathrm{m}$. The resistance of the configuration for the length of $5 \mathrm{~cm}$ cylinder is $\times 10^{-3} \Omega$
151959
Two copper wires, one of length $1 \mathrm{~m}$ and the other of length $9 \mathrm{~m}$ have the same resistance. The diameters are in the ratio
1 $3: 1$
2 $1: 3$
3 $9: 1$
4 $1: 9$
Explanation:
B Given $l_{1}=1 \mathrm{~m}$ $l_{2}=9 \mathrm{~m}$ Resistivity $\mathrm{R}=\frac{\rho \cdot l}{\mathrm{~A}}$ Where $\rho$ is the resistivity of the material $\mathrm{R}_{1} =\frac{\rho l_{1}}{\mathrm{~A}_{1}}$ $\mathrm{R}_{2} =\frac{\rho l_{2}}{\mathrm{~A}_{2}} \quad \ldots . .(\mathrm{i})$ $\frac{\rho l_{1}}{\mathrm{~A}_{1}} =\frac{\rho l_{2}}{\mathrm{~A}_{2}}$ $\frac{\mathrm{D}_{1}^{2}}{\mathrm{D}_{2}^{2}} =\frac{l_{1}}{l_{2}}$ $\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}} =\sqrt{\frac{1}{9}}$ $\mathrm{D}_{1} : \mathrm{D}_{2}=1: 3 \quad\left(\because \mathrm{A}=\frac{\pi \mathrm{D}^{2}}{4}\right)$ Hence the diameter are in the Ratio is $1: 3$
151955
The resistance of a resistance thermometer have values 2.71 and $3.70 \mathrm{ohms}$ at $10^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. The temperature at which the resistance is $3.26 \mathrm{ohm}$ is
C Using Kirchhoff's voltage law, $10 \mathrm{i}-5+20 \mathrm{i}+2=0$ $30 \mathrm{i}=3$ $\mathrm{i}=0.1 \mathrm{~A}$
JCECE-2010
Current Electricity
151958
A resistor is constructed as hollow cylinder of dimensions $r_{a}=0.5 \mathrm{~cm}$ and $r_{b}=1.0 \mathrm{~cm}$ and $\rho=$ $3.5 \times 10^{-5} \Omega \mathrm{m}$. The resistance of the configuration for the length of $5 \mathrm{~cm}$ cylinder is $\times 10^{-3} \Omega$
151959
Two copper wires, one of length $1 \mathrm{~m}$ and the other of length $9 \mathrm{~m}$ have the same resistance. The diameters are in the ratio
1 $3: 1$
2 $1: 3$
3 $9: 1$
4 $1: 9$
Explanation:
B Given $l_{1}=1 \mathrm{~m}$ $l_{2}=9 \mathrm{~m}$ Resistivity $\mathrm{R}=\frac{\rho \cdot l}{\mathrm{~A}}$ Where $\rho$ is the resistivity of the material $\mathrm{R}_{1} =\frac{\rho l_{1}}{\mathrm{~A}_{1}}$ $\mathrm{R}_{2} =\frac{\rho l_{2}}{\mathrm{~A}_{2}} \quad \ldots . .(\mathrm{i})$ $\frac{\rho l_{1}}{\mathrm{~A}_{1}} =\frac{\rho l_{2}}{\mathrm{~A}_{2}}$ $\frac{\mathrm{D}_{1}^{2}}{\mathrm{D}_{2}^{2}} =\frac{l_{1}}{l_{2}}$ $\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}} =\sqrt{\frac{1}{9}}$ $\mathrm{D}_{1} : \mathrm{D}_{2}=1: 3 \quad\left(\because \mathrm{A}=\frac{\pi \mathrm{D}^{2}}{4}\right)$ Hence the diameter are in the Ratio is $1: 3$