01. Ohm's Law, Resistance, Conductivity and Thermal Dependency of Resistance
Current Electricity

151848 Resistivity of the material of a conductor having uniform area of cross-section varies along its length on $x$, according to the relation $\rho=\rho_{0}(a+b x)$, if $L$ is length and $A$ is crosssection area of conductor, then resistance of the conductor given by
( $\rho_{0}, \mathbf{a}, \mathbf{b}$ are constants)

1 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{~L}+\frac{\mathrm{bL}^{2}}{2}\right]$
2 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{3}}{2}\right]$
3 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}^{2}+\frac{\mathrm{bL}^{3}}{2}\right]$
4 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{2}}{2}\right]$
Current Electricity

151849 Consider the circuit as shown below. In the circuit $R_{1}=R_{2}=R_{3}=4 \Omega, V_{1}=10 \mathrm{~V}$ and $V_{2}=5 \mathrm{~V}$. The current flowing through resistance $R_{3}$ is

1 $0 \mathrm{~A}$
2 $1 \mathrm{~A}$
3 $1.75 \mathrm{~A}$
4 $1.25 \mathrm{~A}$
Current Electricity

151850
What will be the equivalent resistance between the terminals $A$ and $B$ of the infinite resistive network shown in the figure?

1 $\frac{(\sqrt{3}+1) \mathrm{R}}{2}$
2 $\frac{(\sqrt{3}-1) \mathrm{R}}{2}$
3 $3 \frac{\mathrm{R}}{2}$
4 $(\sqrt{3}+1) \mathrm{R}$
Current Electricity

151854 Two wires of equal diameters, lengths $l_{1}, l_{2}$ and having resistivities $S_{1}, S_{2}$ respectively are joined in series. The equivalent resistivity of the combination is

1 $\frac{\mathrm{S}_{1} l_{1}+\mathrm{S}_{2} l_{2}}{l_{1}+l_{2}}$
2 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}-l_{2}}$
3 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}+l_{2}}$
4 $\frac{\mathrm{S}_{1} l_{1}-\mathrm{S}_{2} l_{2}}{l_{1}-l_{2}}$
Current Electricity

151855 A resistor has bands with colours orange, green, silver and gold. Then, the resistance of the resistor is

1 $(350 \pm 5) \mathrm{m} \Omega$
2 $(350 \pm 17.5) \mathrm{m} \Omega$
3 $(35 \pm 5 \%) \mathrm{m} \Omega$
4 $(250 \pm 5 \%) \mathrm{m} \Omega$
Current Electricity

151848 Resistivity of the material of a conductor having uniform area of cross-section varies along its length on $x$, according to the relation $\rho=\rho_{0}(a+b x)$, if $L$ is length and $A$ is crosssection area of conductor, then resistance of the conductor given by
( $\rho_{0}, \mathbf{a}, \mathbf{b}$ are constants)

1 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{~L}+\frac{\mathrm{bL}^{2}}{2}\right]$
2 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{3}}{2}\right]$
3 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}^{2}+\frac{\mathrm{bL}^{3}}{2}\right]$
4 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{2}}{2}\right]$
Current Electricity

151849 Consider the circuit as shown below. In the circuit $R_{1}=R_{2}=R_{3}=4 \Omega, V_{1}=10 \mathrm{~V}$ and $V_{2}=5 \mathrm{~V}$. The current flowing through resistance $R_{3}$ is

1 $0 \mathrm{~A}$
2 $1 \mathrm{~A}$
3 $1.75 \mathrm{~A}$
4 $1.25 \mathrm{~A}$
Current Electricity

151850
What will be the equivalent resistance between the terminals $A$ and $B$ of the infinite resistive network shown in the figure?

1 $\frac{(\sqrt{3}+1) \mathrm{R}}{2}$
2 $\frac{(\sqrt{3}-1) \mathrm{R}}{2}$
3 $3 \frac{\mathrm{R}}{2}$
4 $(\sqrt{3}+1) \mathrm{R}$
Current Electricity

151854 Two wires of equal diameters, lengths $l_{1}, l_{2}$ and having resistivities $S_{1}, S_{2}$ respectively are joined in series. The equivalent resistivity of the combination is

1 $\frac{\mathrm{S}_{1} l_{1}+\mathrm{S}_{2} l_{2}}{l_{1}+l_{2}}$
2 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}-l_{2}}$
3 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}+l_{2}}$
4 $\frac{\mathrm{S}_{1} l_{1}-\mathrm{S}_{2} l_{2}}{l_{1}-l_{2}}$
Current Electricity

151855 A resistor has bands with colours orange, green, silver and gold. Then, the resistance of the resistor is

1 $(350 \pm 5) \mathrm{m} \Omega$
2 $(350 \pm 17.5) \mathrm{m} \Omega$
3 $(35 \pm 5 \%) \mathrm{m} \Omega$
4 $(250 \pm 5 \%) \mathrm{m} \Omega$
Current Electricity

151848 Resistivity of the material of a conductor having uniform area of cross-section varies along its length on $x$, according to the relation $\rho=\rho_{0}(a+b x)$, if $L$ is length and $A$ is crosssection area of conductor, then resistance of the conductor given by
( $\rho_{0}, \mathbf{a}, \mathbf{b}$ are constants)

1 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{~L}+\frac{\mathrm{bL}^{2}}{2}\right]$
2 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{3}}{2}\right]$
3 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}^{2}+\frac{\mathrm{bL}^{3}}{2}\right]$
4 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{2}}{2}\right]$
Current Electricity

151849 Consider the circuit as shown below. In the circuit $R_{1}=R_{2}=R_{3}=4 \Omega, V_{1}=10 \mathrm{~V}$ and $V_{2}=5 \mathrm{~V}$. The current flowing through resistance $R_{3}$ is

1 $0 \mathrm{~A}$
2 $1 \mathrm{~A}$
3 $1.75 \mathrm{~A}$
4 $1.25 \mathrm{~A}$
Current Electricity

151850
What will be the equivalent resistance between the terminals $A$ and $B$ of the infinite resistive network shown in the figure?

1 $\frac{(\sqrt{3}+1) \mathrm{R}}{2}$
2 $\frac{(\sqrt{3}-1) \mathrm{R}}{2}$
3 $3 \frac{\mathrm{R}}{2}$
4 $(\sqrt{3}+1) \mathrm{R}$
Current Electricity

151854 Two wires of equal diameters, lengths $l_{1}, l_{2}$ and having resistivities $S_{1}, S_{2}$ respectively are joined in series. The equivalent resistivity of the combination is

1 $\frac{\mathrm{S}_{1} l_{1}+\mathrm{S}_{2} l_{2}}{l_{1}+l_{2}}$
2 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}-l_{2}}$
3 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}+l_{2}}$
4 $\frac{\mathrm{S}_{1} l_{1}-\mathrm{S}_{2} l_{2}}{l_{1}-l_{2}}$
Current Electricity

151855 A resistor has bands with colours orange, green, silver and gold. Then, the resistance of the resistor is

1 $(350 \pm 5) \mathrm{m} \Omega$
2 $(350 \pm 17.5) \mathrm{m} \Omega$
3 $(35 \pm 5 \%) \mathrm{m} \Omega$
4 $(250 \pm 5 \%) \mathrm{m} \Omega$
Current Electricity

151848 Resistivity of the material of a conductor having uniform area of cross-section varies along its length on $x$, according to the relation $\rho=\rho_{0}(a+b x)$, if $L$ is length and $A$ is crosssection area of conductor, then resistance of the conductor given by
( $\rho_{0}, \mathbf{a}, \mathbf{b}$ are constants)

1 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{~L}+\frac{\mathrm{bL}^{2}}{2}\right]$
2 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{3}}{2}\right]$
3 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}^{2}+\frac{\mathrm{bL}^{3}}{2}\right]$
4 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{2}}{2}\right]$
Current Electricity

151849 Consider the circuit as shown below. In the circuit $R_{1}=R_{2}=R_{3}=4 \Omega, V_{1}=10 \mathrm{~V}$ and $V_{2}=5 \mathrm{~V}$. The current flowing through resistance $R_{3}$ is

1 $0 \mathrm{~A}$
2 $1 \mathrm{~A}$
3 $1.75 \mathrm{~A}$
4 $1.25 \mathrm{~A}$
Current Electricity

151850
What will be the equivalent resistance between the terminals $A$ and $B$ of the infinite resistive network shown in the figure?

1 $\frac{(\sqrt{3}+1) \mathrm{R}}{2}$
2 $\frac{(\sqrt{3}-1) \mathrm{R}}{2}$
3 $3 \frac{\mathrm{R}}{2}$
4 $(\sqrt{3}+1) \mathrm{R}$
Current Electricity

151854 Two wires of equal diameters, lengths $l_{1}, l_{2}$ and having resistivities $S_{1}, S_{2}$ respectively are joined in series. The equivalent resistivity of the combination is

1 $\frac{\mathrm{S}_{1} l_{1}+\mathrm{S}_{2} l_{2}}{l_{1}+l_{2}}$
2 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}-l_{2}}$
3 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}+l_{2}}$
4 $\frac{\mathrm{S}_{1} l_{1}-\mathrm{S}_{2} l_{2}}{l_{1}-l_{2}}$
Current Electricity

151855 A resistor has bands with colours orange, green, silver and gold. Then, the resistance of the resistor is

1 $(350 \pm 5) \mathrm{m} \Omega$
2 $(350 \pm 17.5) \mathrm{m} \Omega$
3 $(35 \pm 5 \%) \mathrm{m} \Omega$
4 $(250 \pm 5 \%) \mathrm{m} \Omega$
Current Electricity

151848 Resistivity of the material of a conductor having uniform area of cross-section varies along its length on $x$, according to the relation $\rho=\rho_{0}(a+b x)$, if $L$ is length and $A$ is crosssection area of conductor, then resistance of the conductor given by
( $\rho_{0}, \mathbf{a}, \mathbf{b}$ are constants)

1 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{~L}+\frac{\mathrm{bL}^{2}}{2}\right]$
2 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{3}}{2}\right]$
3 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}^{2}+\frac{\mathrm{bL}^{3}}{2}\right]$
4 $\frac{\rho_{0}}{\mathrm{~A}}\left[\mathrm{aL}+\frac{\mathrm{bL}^{2}}{2}\right]$
Current Electricity

151849 Consider the circuit as shown below. In the circuit $R_{1}=R_{2}=R_{3}=4 \Omega, V_{1}=10 \mathrm{~V}$ and $V_{2}=5 \mathrm{~V}$. The current flowing through resistance $R_{3}$ is

1 $0 \mathrm{~A}$
2 $1 \mathrm{~A}$
3 $1.75 \mathrm{~A}$
4 $1.25 \mathrm{~A}$
Current Electricity

151850
What will be the equivalent resistance between the terminals $A$ and $B$ of the infinite resistive network shown in the figure?

1 $\frac{(\sqrt{3}+1) \mathrm{R}}{2}$
2 $\frac{(\sqrt{3}-1) \mathrm{R}}{2}$
3 $3 \frac{\mathrm{R}}{2}$
4 $(\sqrt{3}+1) \mathrm{R}$
Current Electricity

151854 Two wires of equal diameters, lengths $l_{1}, l_{2}$ and having resistivities $S_{1}, S_{2}$ respectively are joined in series. The equivalent resistivity of the combination is

1 $\frac{\mathrm{S}_{1} l_{1}+\mathrm{S}_{2} l_{2}}{l_{1}+l_{2}}$
2 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}-l_{2}}$
3 $\frac{\mathrm{S}_{1} l_{2}+\mathrm{S}_{2} l_{1}}{l_{1}+l_{2}}$
4 $\frac{\mathrm{S}_{1} l_{1}-\mathrm{S}_{2} l_{2}}{l_{1}-l_{2}}$
Current Electricity

151855 A resistor has bands with colours orange, green, silver and gold. Then, the resistance of the resistor is

1 $(350 \pm 5) \mathrm{m} \Omega$
2 $(350 \pm 17.5) \mathrm{m} \Omega$
3 $(35 \pm 5 \%) \mathrm{m} \Omega$
4 $(250 \pm 5 \%) \mathrm{m} \Omega$