01. Ohm's Law, Resistance, Conductivity and Thermal Dependency of Resistance
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

151832 Resistance of wire at $20{ }^{\circ} \mathrm{C}$ is $10 \Omega$. At what temperature, resistance becomes $30 \Omega$ (The temperature coefficient of resistance $\alpha=$ $\left.0.0125 /{ }^{\circ} \mathrm{C}\right)$

1 $220^{\circ} \mathrm{C}$
2 $100{ }^{\circ} \mathrm{C}$
3 $180^{\circ} \mathrm{C}$
4 $300{ }^{\circ} \mathrm{C}$
Current Electricity

151834 If resistance of a conductor is $5 \Omega$ at $50^{\circ} \mathrm{C}$ and $7 \Omega$ at $100^{\circ} \mathrm{C}$ the mean temperature coefficient of resistance of the material is

1 $0.008 /{ }^{\circ} \mathrm{C}$
2 $0.006 /{ }^{\circ} \mathrm{C}$
3 $0.004 /{ }^{\circ} \mathrm{C}$
4 $0.001 /{ }^{\circ} \mathrm{C}$
[AP EAMC]
Current Electricity

151835 Match the following?
| Column-I | Column-II |
| :--- | :--- |
| A. Conductance | i. Gray |
| B. Magnetic \ltbr> Induction | ii. Lumen |
| C. Absorbed dose | iii. Tesla |
| D. Luminous flux | iv. Siemens |

1 i (A) iii (B) ii (C) iv (D)
2 iv (A) iii (B) ii (C) i (D)
3 iv (A) i (B) iii (C) ii (D)
4 iv (A) iii (B) i (C) ii (D)
Current Electricity

151836 Two resistors $R_{1}=(4 \pm 0.8) \Omega$ and $R_{2}=(4 \pm 0.4)$ $\Omega$ are connected in parallel. The equivalent resistance of their parallel combination will be

1 $(4 \pm 0.4) \Omega$
2 $(2 \pm 0.4) \Omega$
3 $(2 \pm 0.3) \Omega$
4 $(4 \pm 0.3) \Omega$
Current Electricity

151832 Resistance of wire at $20{ }^{\circ} \mathrm{C}$ is $10 \Omega$. At what temperature, resistance becomes $30 \Omega$ (The temperature coefficient of resistance $\alpha=$ $\left.0.0125 /{ }^{\circ} \mathrm{C}\right)$

1 $220^{\circ} \mathrm{C}$
2 $100{ }^{\circ} \mathrm{C}$
3 $180^{\circ} \mathrm{C}$
4 $300{ }^{\circ} \mathrm{C}$
Current Electricity

151834 If resistance of a conductor is $5 \Omega$ at $50^{\circ} \mathrm{C}$ and $7 \Omega$ at $100^{\circ} \mathrm{C}$ the mean temperature coefficient of resistance of the material is

1 $0.008 /{ }^{\circ} \mathrm{C}$
2 $0.006 /{ }^{\circ} \mathrm{C}$
3 $0.004 /{ }^{\circ} \mathrm{C}$
4 $0.001 /{ }^{\circ} \mathrm{C}$
[AP EAMC]
Current Electricity

151835 Match the following?
| Column-I | Column-II |
| :--- | :--- |
| A. Conductance | i. Gray |
| B. Magnetic \ltbr> Induction | ii. Lumen |
| C. Absorbed dose | iii. Tesla |
| D. Luminous flux | iv. Siemens |

1 i (A) iii (B) ii (C) iv (D)
2 iv (A) iii (B) ii (C) i (D)
3 iv (A) i (B) iii (C) ii (D)
4 iv (A) iii (B) i (C) ii (D)
Current Electricity

151836 Two resistors $R_{1}=(4 \pm 0.8) \Omega$ and $R_{2}=(4 \pm 0.4)$ $\Omega$ are connected in parallel. The equivalent resistance of their parallel combination will be

1 $(4 \pm 0.4) \Omega$
2 $(2 \pm 0.4) \Omega$
3 $(2 \pm 0.3) \Omega$
4 $(4 \pm 0.3) \Omega$
Current Electricity

151832 Resistance of wire at $20{ }^{\circ} \mathrm{C}$ is $10 \Omega$. At what temperature, resistance becomes $30 \Omega$ (The temperature coefficient of resistance $\alpha=$ $\left.0.0125 /{ }^{\circ} \mathrm{C}\right)$

1 $220^{\circ} \mathrm{C}$
2 $100{ }^{\circ} \mathrm{C}$
3 $180^{\circ} \mathrm{C}$
4 $300{ }^{\circ} \mathrm{C}$
Current Electricity

151834 If resistance of a conductor is $5 \Omega$ at $50^{\circ} \mathrm{C}$ and $7 \Omega$ at $100^{\circ} \mathrm{C}$ the mean temperature coefficient of resistance of the material is

1 $0.008 /{ }^{\circ} \mathrm{C}$
2 $0.006 /{ }^{\circ} \mathrm{C}$
3 $0.004 /{ }^{\circ} \mathrm{C}$
4 $0.001 /{ }^{\circ} \mathrm{C}$
[AP EAMC]
Current Electricity

151835 Match the following?
| Column-I | Column-II |
| :--- | :--- |
| A. Conductance | i. Gray |
| B. Magnetic \ltbr> Induction | ii. Lumen |
| C. Absorbed dose | iii. Tesla |
| D. Luminous flux | iv. Siemens |

1 i (A) iii (B) ii (C) iv (D)
2 iv (A) iii (B) ii (C) i (D)
3 iv (A) i (B) iii (C) ii (D)
4 iv (A) iii (B) i (C) ii (D)
Current Electricity

151836 Two resistors $R_{1}=(4 \pm 0.8) \Omega$ and $R_{2}=(4 \pm 0.4)$ $\Omega$ are connected in parallel. The equivalent resistance of their parallel combination will be

1 $(4 \pm 0.4) \Omega$
2 $(2 \pm 0.4) \Omega$
3 $(2 \pm 0.3) \Omega$
4 $(4 \pm 0.3) \Omega$
Current Electricity

151832 Resistance of wire at $20{ }^{\circ} \mathrm{C}$ is $10 \Omega$. At what temperature, resistance becomes $30 \Omega$ (The temperature coefficient of resistance $\alpha=$ $\left.0.0125 /{ }^{\circ} \mathrm{C}\right)$

1 $220^{\circ} \mathrm{C}$
2 $100{ }^{\circ} \mathrm{C}$
3 $180^{\circ} \mathrm{C}$
4 $300{ }^{\circ} \mathrm{C}$
Current Electricity

151834 If resistance of a conductor is $5 \Omega$ at $50^{\circ} \mathrm{C}$ and $7 \Omega$ at $100^{\circ} \mathrm{C}$ the mean temperature coefficient of resistance of the material is

1 $0.008 /{ }^{\circ} \mathrm{C}$
2 $0.006 /{ }^{\circ} \mathrm{C}$
3 $0.004 /{ }^{\circ} \mathrm{C}$
4 $0.001 /{ }^{\circ} \mathrm{C}$
[AP EAMC]
Current Electricity

151835 Match the following?
| Column-I | Column-II |
| :--- | :--- |
| A. Conductance | i. Gray |
| B. Magnetic \ltbr> Induction | ii. Lumen |
| C. Absorbed dose | iii. Tesla |
| D. Luminous flux | iv. Siemens |

1 i (A) iii (B) ii (C) iv (D)
2 iv (A) iii (B) ii (C) i (D)
3 iv (A) i (B) iii (C) ii (D)
4 iv (A) iii (B) i (C) ii (D)
Current Electricity

151836 Two resistors $R_{1}=(4 \pm 0.8) \Omega$ and $R_{2}=(4 \pm 0.4)$ $\Omega$ are connected in parallel. The equivalent resistance of their parallel combination will be

1 $(4 \pm 0.4) \Omega$
2 $(2 \pm 0.4) \Omega$
3 $(2 \pm 0.3) \Omega$
4 $(4 \pm 0.3) \Omega$