01. Ohm's Law, Resistance, Conductivity and Thermal Dependency of Resistance
Current Electricity

151825 A cylindrical metallic wire is stretched to increase its length in such a way that the metallic wire changes its resistance by $6 \%$. The percentage increase in its length is

1 $2 \%$
2 $4 \%$
3 $3 \%$
4 $12 \%$
Current Electricity

151826 A metal wire of length $L$ and radius $r$ has a resistance $R$. If a wire of the same metal of length $2 \mathrm{~L}$ and radius $3 r$ is taken, then what will be its resistance?

1 $\frac{2}{9} \mathrm{R}$
2 $\frac{2}{3} \mathrm{R}$
3 $\frac{2}{9 \pi} \mathrm{R}$
4 $\frac{2}{3 \pi} \mathrm{R}$
Current Electricity

151828 The resistance of a metal is $5 \Omega$ and $6 \Omega$ at $50^{\circ} \mathrm{C}$ and ${ }^{100}{ }^{\circ} \mathrm{C}$, respectively. The temperature at which the resistance is $7 \Omega$ is

1 $140^{\circ} \mathrm{C}$
2 $200^{\circ} \mathrm{C}$
3 $150^{\circ} \mathrm{C}$
4 $155^{\circ} \mathrm{C}$
Current Electricity

151829 Two resistors of $3 \Omega$ and $6 \Omega$ are connected in parallel. If the total current through the resistors is $15 \mathrm{~A}$, then the currents through the resistor and the potential difference across the terminals of the parallel combination $\left(I_{3 \Omega} ; I_{6 \Omega} ;\right.$ V) are

1 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 60 \mathrm{~V}$
2 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 30 \mathrm{~V}$
3 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 60 \mathrm{~V}$
4 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 30 \mathrm{~V}$
Current Electricity

151830 The resistance of a wire (its temperature coefficient $=0.001 \mathrm{~K}^{-1}$ ) is $4 \Omega$ at $27^{\circ} \mathrm{C}$. If its temperature is increased twice the initial value, the final resistance of the wire is

1 $4.1 \Omega$
2 $4.5 \Omega$
3 $4.9 \Omega$
4 $5.2 \Omega$
Current Electricity

151825 A cylindrical metallic wire is stretched to increase its length in such a way that the metallic wire changes its resistance by $6 \%$. The percentage increase in its length is

1 $2 \%$
2 $4 \%$
3 $3 \%$
4 $12 \%$
Current Electricity

151826 A metal wire of length $L$ and radius $r$ has a resistance $R$. If a wire of the same metal of length $2 \mathrm{~L}$ and radius $3 r$ is taken, then what will be its resistance?

1 $\frac{2}{9} \mathrm{R}$
2 $\frac{2}{3} \mathrm{R}$
3 $\frac{2}{9 \pi} \mathrm{R}$
4 $\frac{2}{3 \pi} \mathrm{R}$
Current Electricity

151828 The resistance of a metal is $5 \Omega$ and $6 \Omega$ at $50^{\circ} \mathrm{C}$ and ${ }^{100}{ }^{\circ} \mathrm{C}$, respectively. The temperature at which the resistance is $7 \Omega$ is

1 $140^{\circ} \mathrm{C}$
2 $200^{\circ} \mathrm{C}$
3 $150^{\circ} \mathrm{C}$
4 $155^{\circ} \mathrm{C}$
Current Electricity

151829 Two resistors of $3 \Omega$ and $6 \Omega$ are connected in parallel. If the total current through the resistors is $15 \mathrm{~A}$, then the currents through the resistor and the potential difference across the terminals of the parallel combination $\left(I_{3 \Omega} ; I_{6 \Omega} ;\right.$ V) are

1 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 60 \mathrm{~V}$
2 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 30 \mathrm{~V}$
3 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 60 \mathrm{~V}$
4 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 30 \mathrm{~V}$
Current Electricity

151830 The resistance of a wire (its temperature coefficient $=0.001 \mathrm{~K}^{-1}$ ) is $4 \Omega$ at $27^{\circ} \mathrm{C}$. If its temperature is increased twice the initial value, the final resistance of the wire is

1 $4.1 \Omega$
2 $4.5 \Omega$
3 $4.9 \Omega$
4 $5.2 \Omega$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

151825 A cylindrical metallic wire is stretched to increase its length in such a way that the metallic wire changes its resistance by $6 \%$. The percentage increase in its length is

1 $2 \%$
2 $4 \%$
3 $3 \%$
4 $12 \%$
Current Electricity

151826 A metal wire of length $L$ and radius $r$ has a resistance $R$. If a wire of the same metal of length $2 \mathrm{~L}$ and radius $3 r$ is taken, then what will be its resistance?

1 $\frac{2}{9} \mathrm{R}$
2 $\frac{2}{3} \mathrm{R}$
3 $\frac{2}{9 \pi} \mathrm{R}$
4 $\frac{2}{3 \pi} \mathrm{R}$
Current Electricity

151828 The resistance of a metal is $5 \Omega$ and $6 \Omega$ at $50^{\circ} \mathrm{C}$ and ${ }^{100}{ }^{\circ} \mathrm{C}$, respectively. The temperature at which the resistance is $7 \Omega$ is

1 $140^{\circ} \mathrm{C}$
2 $200^{\circ} \mathrm{C}$
3 $150^{\circ} \mathrm{C}$
4 $155^{\circ} \mathrm{C}$
Current Electricity

151829 Two resistors of $3 \Omega$ and $6 \Omega$ are connected in parallel. If the total current through the resistors is $15 \mathrm{~A}$, then the currents through the resistor and the potential difference across the terminals of the parallel combination $\left(I_{3 \Omega} ; I_{6 \Omega} ;\right.$ V) are

1 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 60 \mathrm{~V}$
2 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 30 \mathrm{~V}$
3 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 60 \mathrm{~V}$
4 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 30 \mathrm{~V}$
Current Electricity

151830 The resistance of a wire (its temperature coefficient $=0.001 \mathrm{~K}^{-1}$ ) is $4 \Omega$ at $27^{\circ} \mathrm{C}$. If its temperature is increased twice the initial value, the final resistance of the wire is

1 $4.1 \Omega$
2 $4.5 \Omega$
3 $4.9 \Omega$
4 $5.2 \Omega$
Current Electricity

151825 A cylindrical metallic wire is stretched to increase its length in such a way that the metallic wire changes its resistance by $6 \%$. The percentage increase in its length is

1 $2 \%$
2 $4 \%$
3 $3 \%$
4 $12 \%$
Current Electricity

151826 A metal wire of length $L$ and radius $r$ has a resistance $R$. If a wire of the same metal of length $2 \mathrm{~L}$ and radius $3 r$ is taken, then what will be its resistance?

1 $\frac{2}{9} \mathrm{R}$
2 $\frac{2}{3} \mathrm{R}$
3 $\frac{2}{9 \pi} \mathrm{R}$
4 $\frac{2}{3 \pi} \mathrm{R}$
Current Electricity

151828 The resistance of a metal is $5 \Omega$ and $6 \Omega$ at $50^{\circ} \mathrm{C}$ and ${ }^{100}{ }^{\circ} \mathrm{C}$, respectively. The temperature at which the resistance is $7 \Omega$ is

1 $140^{\circ} \mathrm{C}$
2 $200^{\circ} \mathrm{C}$
3 $150^{\circ} \mathrm{C}$
4 $155^{\circ} \mathrm{C}$
Current Electricity

151829 Two resistors of $3 \Omega$ and $6 \Omega$ are connected in parallel. If the total current through the resistors is $15 \mathrm{~A}$, then the currents through the resistor and the potential difference across the terminals of the parallel combination $\left(I_{3 \Omega} ; I_{6 \Omega} ;\right.$ V) are

1 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 60 \mathrm{~V}$
2 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 30 \mathrm{~V}$
3 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 60 \mathrm{~V}$
4 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 30 \mathrm{~V}$
Current Electricity

151830 The resistance of a wire (its temperature coefficient $=0.001 \mathrm{~K}^{-1}$ ) is $4 \Omega$ at $27^{\circ} \mathrm{C}$. If its temperature is increased twice the initial value, the final resistance of the wire is

1 $4.1 \Omega$
2 $4.5 \Omega$
3 $4.9 \Omega$
4 $5.2 \Omega$
Current Electricity

151825 A cylindrical metallic wire is stretched to increase its length in such a way that the metallic wire changes its resistance by $6 \%$. The percentage increase in its length is

1 $2 \%$
2 $4 \%$
3 $3 \%$
4 $12 \%$
Current Electricity

151826 A metal wire of length $L$ and radius $r$ has a resistance $R$. If a wire of the same metal of length $2 \mathrm{~L}$ and radius $3 r$ is taken, then what will be its resistance?

1 $\frac{2}{9} \mathrm{R}$
2 $\frac{2}{3} \mathrm{R}$
3 $\frac{2}{9 \pi} \mathrm{R}$
4 $\frac{2}{3 \pi} \mathrm{R}$
Current Electricity

151828 The resistance of a metal is $5 \Omega$ and $6 \Omega$ at $50^{\circ} \mathrm{C}$ and ${ }^{100}{ }^{\circ} \mathrm{C}$, respectively. The temperature at which the resistance is $7 \Omega$ is

1 $140^{\circ} \mathrm{C}$
2 $200^{\circ} \mathrm{C}$
3 $150^{\circ} \mathrm{C}$
4 $155^{\circ} \mathrm{C}$
Current Electricity

151829 Two resistors of $3 \Omega$ and $6 \Omega$ are connected in parallel. If the total current through the resistors is $15 \mathrm{~A}$, then the currents through the resistor and the potential difference across the terminals of the parallel combination $\left(I_{3 \Omega} ; I_{6 \Omega} ;\right.$ V) are

1 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 60 \mathrm{~V}$
2 $5 \mathrm{~A} ; 10 \mathrm{~A} ; 30 \mathrm{~V}$
3 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 60 \mathrm{~V}$
4 $10 \mathrm{~A} ; 5 \mathrm{~A} ; 30 \mathrm{~V}$
Current Electricity

151830 The resistance of a wire (its temperature coefficient $=0.001 \mathrm{~K}^{-1}$ ) is $4 \Omega$ at $27^{\circ} \mathrm{C}$. If its temperature is increased twice the initial value, the final resistance of the wire is

1 $4.1 \Omega$
2 $4.5 \Omega$
3 $4.9 \Omega$
4 $5.2 \Omega$