00. Electric Current, Current Density and Drift Velocity
Current Electricity

151795 A current of $5 \mathrm{~A}$ is passing through a metallic wire of cross-sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of charge carriers of the wire is $5 \times 10^{26}$ $\mathrm{m}^{-3}$, then the drift velocity of the electrons will be

1 $1 \times 10^{2} \mathrm{~m} / \mathrm{s}$
2 $1.56 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
3 $1.56 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
4 $1 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
Current Electricity

151796 In the circuit shown the value of $I$ in ampere is

1 1
2 0.60
3 0.4
4 1.5
Current Electricity

151797 The kinetic energy of an electron, which is accelerated in the potential difference of $100 \mathrm{~V}$, is

1 $1.6 \times 10^{-17} \mathrm{~J}$
2 $1.6 \times 10^{-14} \mathrm{~J}$
3 $1.6 \times 10^{-10} \mathrm{~J}$
4 $1.6 \times 10^{-8} \mathrm{~J}$
Current Electricity

151799 A conductor has a non-uniform section as shown in the figure. A steady current is flowing through it. Then the drift speed of the electrons

1 varies unpredictably
2 increases from $P$ to $Q$
3 decreases from $\mathrm{P}$ to $\mathrm{Q}$
4 is constant throughout the wire
Current Electricity

151800 A current of $16 \mathrm{~A}$ is made to pass through a conductor in which the number density of free electrons is $4 \times 10^{28} \mathrm{~m}^{-3}$ and its area of crosssection is $10^{-5} \mathrm{~m}^{2}$. The average drift velocity of free electrons in the conductor is

1 $2.5 \times 10^{-4} \mathrm{~ms}^{-1}$
2 $3.2 \times 10^{-4} \mathrm{~ms}^{-1}$
3 $6.4 \times 10^{-4} \mathrm{~ms}^{-1}$
4 $1.6 \times 10^{-4} \mathrm{~ms}^{-1}$
Current Electricity

151795 A current of $5 \mathrm{~A}$ is passing through a metallic wire of cross-sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of charge carriers of the wire is $5 \times 10^{26}$ $\mathrm{m}^{-3}$, then the drift velocity of the electrons will be

1 $1 \times 10^{2} \mathrm{~m} / \mathrm{s}$
2 $1.56 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
3 $1.56 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
4 $1 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
Current Electricity

151796 In the circuit shown the value of $I$ in ampere is

1 1
2 0.60
3 0.4
4 1.5
Current Electricity

151797 The kinetic energy of an electron, which is accelerated in the potential difference of $100 \mathrm{~V}$, is

1 $1.6 \times 10^{-17} \mathrm{~J}$
2 $1.6 \times 10^{-14} \mathrm{~J}$
3 $1.6 \times 10^{-10} \mathrm{~J}$
4 $1.6 \times 10^{-8} \mathrm{~J}$
Current Electricity

151799 A conductor has a non-uniform section as shown in the figure. A steady current is flowing through it. Then the drift speed of the electrons

1 varies unpredictably
2 increases from $P$ to $Q$
3 decreases from $\mathrm{P}$ to $\mathrm{Q}$
4 is constant throughout the wire
Current Electricity

151800 A current of $16 \mathrm{~A}$ is made to pass through a conductor in which the number density of free electrons is $4 \times 10^{28} \mathrm{~m}^{-3}$ and its area of crosssection is $10^{-5} \mathrm{~m}^{2}$. The average drift velocity of free electrons in the conductor is

1 $2.5 \times 10^{-4} \mathrm{~ms}^{-1}$
2 $3.2 \times 10^{-4} \mathrm{~ms}^{-1}$
3 $6.4 \times 10^{-4} \mathrm{~ms}^{-1}$
4 $1.6 \times 10^{-4} \mathrm{~ms}^{-1}$
Current Electricity

151795 A current of $5 \mathrm{~A}$ is passing through a metallic wire of cross-sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of charge carriers of the wire is $5 \times 10^{26}$ $\mathrm{m}^{-3}$, then the drift velocity of the electrons will be

1 $1 \times 10^{2} \mathrm{~m} / \mathrm{s}$
2 $1.56 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
3 $1.56 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
4 $1 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
Current Electricity

151796 In the circuit shown the value of $I$ in ampere is

1 1
2 0.60
3 0.4
4 1.5
Current Electricity

151797 The kinetic energy of an electron, which is accelerated in the potential difference of $100 \mathrm{~V}$, is

1 $1.6 \times 10^{-17} \mathrm{~J}$
2 $1.6 \times 10^{-14} \mathrm{~J}$
3 $1.6 \times 10^{-10} \mathrm{~J}$
4 $1.6 \times 10^{-8} \mathrm{~J}$
Current Electricity

151799 A conductor has a non-uniform section as shown in the figure. A steady current is flowing through it. Then the drift speed of the electrons

1 varies unpredictably
2 increases from $P$ to $Q$
3 decreases from $\mathrm{P}$ to $\mathrm{Q}$
4 is constant throughout the wire
Current Electricity

151800 A current of $16 \mathrm{~A}$ is made to pass through a conductor in which the number density of free electrons is $4 \times 10^{28} \mathrm{~m}^{-3}$ and its area of crosssection is $10^{-5} \mathrm{~m}^{2}$. The average drift velocity of free electrons in the conductor is

1 $2.5 \times 10^{-4} \mathrm{~ms}^{-1}$
2 $3.2 \times 10^{-4} \mathrm{~ms}^{-1}$
3 $6.4 \times 10^{-4} \mathrm{~ms}^{-1}$
4 $1.6 \times 10^{-4} \mathrm{~ms}^{-1}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

151795 A current of $5 \mathrm{~A}$ is passing through a metallic wire of cross-sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of charge carriers of the wire is $5 \times 10^{26}$ $\mathrm{m}^{-3}$, then the drift velocity of the electrons will be

1 $1 \times 10^{2} \mathrm{~m} / \mathrm{s}$
2 $1.56 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
3 $1.56 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
4 $1 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
Current Electricity

151796 In the circuit shown the value of $I$ in ampere is

1 1
2 0.60
3 0.4
4 1.5
Current Electricity

151797 The kinetic energy of an electron, which is accelerated in the potential difference of $100 \mathrm{~V}$, is

1 $1.6 \times 10^{-17} \mathrm{~J}$
2 $1.6 \times 10^{-14} \mathrm{~J}$
3 $1.6 \times 10^{-10} \mathrm{~J}$
4 $1.6 \times 10^{-8} \mathrm{~J}$
Current Electricity

151799 A conductor has a non-uniform section as shown in the figure. A steady current is flowing through it. Then the drift speed of the electrons

1 varies unpredictably
2 increases from $P$ to $Q$
3 decreases from $\mathrm{P}$ to $\mathrm{Q}$
4 is constant throughout the wire
Current Electricity

151800 A current of $16 \mathrm{~A}$ is made to pass through a conductor in which the number density of free electrons is $4 \times 10^{28} \mathrm{~m}^{-3}$ and its area of crosssection is $10^{-5} \mathrm{~m}^{2}$. The average drift velocity of free electrons in the conductor is

1 $2.5 \times 10^{-4} \mathrm{~ms}^{-1}$
2 $3.2 \times 10^{-4} \mathrm{~ms}^{-1}$
3 $6.4 \times 10^{-4} \mathrm{~ms}^{-1}$
4 $1.6 \times 10^{-4} \mathrm{~ms}^{-1}$
Current Electricity

151795 A current of $5 \mathrm{~A}$ is passing through a metallic wire of cross-sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of charge carriers of the wire is $5 \times 10^{26}$ $\mathrm{m}^{-3}$, then the drift velocity of the electrons will be

1 $1 \times 10^{2} \mathrm{~m} / \mathrm{s}$
2 $1.56 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
3 $1.56 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
4 $1 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
Current Electricity

151796 In the circuit shown the value of $I$ in ampere is

1 1
2 0.60
3 0.4
4 1.5
Current Electricity

151797 The kinetic energy of an electron, which is accelerated in the potential difference of $100 \mathrm{~V}$, is

1 $1.6 \times 10^{-17} \mathrm{~J}$
2 $1.6 \times 10^{-14} \mathrm{~J}$
3 $1.6 \times 10^{-10} \mathrm{~J}$
4 $1.6 \times 10^{-8} \mathrm{~J}$
Current Electricity

151799 A conductor has a non-uniform section as shown in the figure. A steady current is flowing through it. Then the drift speed of the electrons

1 varies unpredictably
2 increases from $P$ to $Q$
3 decreases from $\mathrm{P}$ to $\mathrm{Q}$
4 is constant throughout the wire
Current Electricity

151800 A current of $16 \mathrm{~A}$ is made to pass through a conductor in which the number density of free electrons is $4 \times 10^{28} \mathrm{~m}^{-3}$ and its area of crosssection is $10^{-5} \mathrm{~m}^{2}$. The average drift velocity of free electrons in the conductor is

1 $2.5 \times 10^{-4} \mathrm{~ms}^{-1}$
2 $3.2 \times 10^{-4} \mathrm{~ms}^{-1}$
3 $6.4 \times 10^{-4} \mathrm{~ms}^{-1}$
4 $1.6 \times 10^{-4} \mathrm{~ms}^{-1}$