00. Electric Current, Current Density and Drift Velocity
Current Electricity

151743 Consider a horizontal sheet with charge density $5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. A particle of mass $8 \times 10^{-6} \mathrm{~g}$ is dropped from a certain height onto this sheet. The number of electrons that should be removed from this particle so that it stays close to the sheet without falling on it is $\left(\right.$ Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$

1 $\frac{2}{9 \pi} \times 10^{8}$
2 $\frac{2 \pi}{9} \times 10^{8}$
3 $\frac{\pi}{5} \times 10^{8}$
4 $\frac{1}{18 \pi} \times 10^{8}$
Current Electricity

151744 Though the electron drift velocity is small and electron charge is very small, a conductor can carry an appreciably large current because:

1 Electron number density is very large
2 Drift velocity of electron is very large
3 Electron number density depends on temperature
4 Relaxation time is small
Current Electricity

151746 A current of 10 amp is passing through a metallic wire of cross sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of the aluminum conductor is $\mathbf{2 . 7}$ $\mathrm{gm} / \mathrm{cc}$ considering aluminum gives 1 electrons per atom for conduction find the drift speed of the electrons if molecular weight of aluminum is $\mathbf{2 7} \mathbf{g m}$.

1 $1.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
2 $3.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
3 $2.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
4 $1.5 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
Current Electricity

151748 Estimate the magnitude of current that passes through a wire, if $0.1 \mathrm{~mol}$ of electrons flow through it in $40 \mathrm{~min}$. (Assume, Avogadro's number $=6.0 \times 10^{23}$ )

1 $4 \mathrm{~A}$
2 $9 \mathrm{~A}$
3 $12 \mathrm{~A}$
4 $14 \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

151743 Consider a horizontal sheet with charge density $5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. A particle of mass $8 \times 10^{-6} \mathrm{~g}$ is dropped from a certain height onto this sheet. The number of electrons that should be removed from this particle so that it stays close to the sheet without falling on it is $\left(\right.$ Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$

1 $\frac{2}{9 \pi} \times 10^{8}$
2 $\frac{2 \pi}{9} \times 10^{8}$
3 $\frac{\pi}{5} \times 10^{8}$
4 $\frac{1}{18 \pi} \times 10^{8}$
Current Electricity

151744 Though the electron drift velocity is small and electron charge is very small, a conductor can carry an appreciably large current because:

1 Electron number density is very large
2 Drift velocity of electron is very large
3 Electron number density depends on temperature
4 Relaxation time is small
Current Electricity

151746 A current of 10 amp is passing through a metallic wire of cross sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of the aluminum conductor is $\mathbf{2 . 7}$ $\mathrm{gm} / \mathrm{cc}$ considering aluminum gives 1 electrons per atom for conduction find the drift speed of the electrons if molecular weight of aluminum is $\mathbf{2 7} \mathbf{g m}$.

1 $1.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
2 $3.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
3 $2.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
4 $1.5 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
Current Electricity

151748 Estimate the magnitude of current that passes through a wire, if $0.1 \mathrm{~mol}$ of electrons flow through it in $40 \mathrm{~min}$. (Assume, Avogadro's number $=6.0 \times 10^{23}$ )

1 $4 \mathrm{~A}$
2 $9 \mathrm{~A}$
3 $12 \mathrm{~A}$
4 $14 \mathrm{~A}$
Current Electricity

151743 Consider a horizontal sheet with charge density $5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. A particle of mass $8 \times 10^{-6} \mathrm{~g}$ is dropped from a certain height onto this sheet. The number of electrons that should be removed from this particle so that it stays close to the sheet without falling on it is $\left(\right.$ Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$

1 $\frac{2}{9 \pi} \times 10^{8}$
2 $\frac{2 \pi}{9} \times 10^{8}$
3 $\frac{\pi}{5} \times 10^{8}$
4 $\frac{1}{18 \pi} \times 10^{8}$
Current Electricity

151744 Though the electron drift velocity is small and electron charge is very small, a conductor can carry an appreciably large current because:

1 Electron number density is very large
2 Drift velocity of electron is very large
3 Electron number density depends on temperature
4 Relaxation time is small
Current Electricity

151746 A current of 10 amp is passing through a metallic wire of cross sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of the aluminum conductor is $\mathbf{2 . 7}$ $\mathrm{gm} / \mathrm{cc}$ considering aluminum gives 1 electrons per atom for conduction find the drift speed of the electrons if molecular weight of aluminum is $\mathbf{2 7} \mathbf{g m}$.

1 $1.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
2 $3.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
3 $2.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
4 $1.5 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
Current Electricity

151748 Estimate the magnitude of current that passes through a wire, if $0.1 \mathrm{~mol}$ of electrons flow through it in $40 \mathrm{~min}$. (Assume, Avogadro's number $=6.0 \times 10^{23}$ )

1 $4 \mathrm{~A}$
2 $9 \mathrm{~A}$
3 $12 \mathrm{~A}$
4 $14 \mathrm{~A}$
Current Electricity

151743 Consider a horizontal sheet with charge density $5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. A particle of mass $8 \times 10^{-6} \mathrm{~g}$ is dropped from a certain height onto this sheet. The number of electrons that should be removed from this particle so that it stays close to the sheet without falling on it is $\left(\right.$ Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$

1 $\frac{2}{9 \pi} \times 10^{8}$
2 $\frac{2 \pi}{9} \times 10^{8}$
3 $\frac{\pi}{5} \times 10^{8}$
4 $\frac{1}{18 \pi} \times 10^{8}$
Current Electricity

151744 Though the electron drift velocity is small and electron charge is very small, a conductor can carry an appreciably large current because:

1 Electron number density is very large
2 Drift velocity of electron is very large
3 Electron number density depends on temperature
4 Relaxation time is small
Current Electricity

151746 A current of 10 amp is passing through a metallic wire of cross sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of the aluminum conductor is $\mathbf{2 . 7}$ $\mathrm{gm} / \mathrm{cc}$ considering aluminum gives 1 electrons per atom for conduction find the drift speed of the electrons if molecular weight of aluminum is $\mathbf{2 7} \mathbf{g m}$.

1 $1.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
2 $3.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
3 $2.6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
4 $1.5 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
Current Electricity

151748 Estimate the magnitude of current that passes through a wire, if $0.1 \mathrm{~mol}$ of electrons flow through it in $40 \mathrm{~min}$. (Assume, Avogadro's number $=6.0 \times 10^{23}$ )

1 $4 \mathrm{~A}$
2 $9 \mathrm{~A}$
3 $12 \mathrm{~A}$
4 $14 \mathrm{~A}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here