151743 Consider a horizontal sheet with charge density $5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. A particle of mass $8 \times 10^{-6} \mathrm{~g}$ is dropped from a certain height onto this sheet. The number of electrons that should be removed from this particle so that it stays close to the sheet without falling on it is $\left(\right.$ Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$
151746 A current of 10 amp is passing through a metallic wire of cross sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of the aluminum conductor is $\mathbf{2 . 7}$ $\mathrm{gm} / \mathrm{cc}$ considering aluminum gives 1 electrons per atom for conduction find the drift speed of the electrons if molecular weight of aluminum is $\mathbf{2 7} \mathbf{g m}$.
151743 Consider a horizontal sheet with charge density $5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. A particle of mass $8 \times 10^{-6} \mathrm{~g}$ is dropped from a certain height onto this sheet. The number of electrons that should be removed from this particle so that it stays close to the sheet without falling on it is $\left(\right.$ Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$
151746 A current of 10 amp is passing through a metallic wire of cross sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of the aluminum conductor is $\mathbf{2 . 7}$ $\mathrm{gm} / \mathrm{cc}$ considering aluminum gives 1 electrons per atom for conduction find the drift speed of the electrons if molecular weight of aluminum is $\mathbf{2 7} \mathbf{g m}$.
151743 Consider a horizontal sheet with charge density $5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. A particle of mass $8 \times 10^{-6} \mathrm{~g}$ is dropped from a certain height onto this sheet. The number of electrons that should be removed from this particle so that it stays close to the sheet without falling on it is $\left(\right.$ Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$
151746 A current of 10 amp is passing through a metallic wire of cross sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of the aluminum conductor is $\mathbf{2 . 7}$ $\mathrm{gm} / \mathrm{cc}$ considering aluminum gives 1 electrons per atom for conduction find the drift speed of the electrons if molecular weight of aluminum is $\mathbf{2 7} \mathbf{g m}$.
151743 Consider a horizontal sheet with charge density $5 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. A particle of mass $8 \times 10^{-6} \mathrm{~g}$ is dropped from a certain height onto this sheet. The number of electrons that should be removed from this particle so that it stays close to the sheet without falling on it is $\left(\right.$ Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}\right)$
151746 A current of 10 amp is passing through a metallic wire of cross sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of the aluminum conductor is $\mathbf{2 . 7}$ $\mathrm{gm} / \mathrm{cc}$ considering aluminum gives 1 electrons per atom for conduction find the drift speed of the electrons if molecular weight of aluminum is $\mathbf{2 7} \mathbf{g m}$.