00. Electric Current, Current Density and Drift Velocity
Current Electricity

151723 A horizontal wire carries $160 \mathrm{~A}$ current below which another wire of linear density $10 \mathrm{~g} / \mathrm{m}$ carrying a current is kept at $\mathbf{4} \mathbf{~ c m}$ distance. If the wire is kept below hangs in air. What is the current in this wire when the direction of current in both the wires is same?
$\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\mu_{0}=4 \pi \times 10^{-7}$ )

1 $125 \mathrm{~A}$
2 $140 \mathrm{~A}$
3 $110 \mathrm{~A}$
4 $100 \mathrm{~A}$
Current Electricity

151724 Find the current in the three resistors as shown in the following figure?

1 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{4 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{2 \mathrm{v}}{\mathrm{R}}$
2 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=0, \mathrm{i}_{3}=0$
3 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{2 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{4 \mathrm{v}}{\mathrm{R}}$
4 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{2 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{2 \mathrm{v}}{\mathrm{R}}$
Current Electricity

151725 The resistivity of a metal is $1 \times 10^{-8} \Omega \mathrm{m}$. If it contains $9 \times 10^{28}$ electrons per $\mathrm{m}^{3}$ then the relaxation time of electrons inside the metal is nearly.
$\text { (electron mass }=9.1 \times 10^{-31} \mathrm{~kg} \text { ) }$

1 $4 \times 10^{-14} \mathrm{~s}$
2 $7 \times 10^{-14} \mathrm{~s}$
3 $1.0 \times 10^{-14} \mathrm{~s}$
4 $9 \times 10^{-14} \mathrm{~s}$
Current Electricity

151726 Find the mobility of electron in a wire, if its average collision time is $9.1 \times 10^{-15} \mathrm{~s}$.
(charge of electron $=1.6 \times 10^{-19} \mathrm{C}$ and mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$ )

1 $9.1 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
2 $1.6 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
3 $1.75 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
4 $1 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
Current Electricity

151723 A horizontal wire carries $160 \mathrm{~A}$ current below which another wire of linear density $10 \mathrm{~g} / \mathrm{m}$ carrying a current is kept at $\mathbf{4} \mathbf{~ c m}$ distance. If the wire is kept below hangs in air. What is the current in this wire when the direction of current in both the wires is same?
$\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\mu_{0}=4 \pi \times 10^{-7}$ )

1 $125 \mathrm{~A}$
2 $140 \mathrm{~A}$
3 $110 \mathrm{~A}$
4 $100 \mathrm{~A}$
Current Electricity

151724 Find the current in the three resistors as shown in the following figure?

1 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{4 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{2 \mathrm{v}}{\mathrm{R}}$
2 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=0, \mathrm{i}_{3}=0$
3 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{2 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{4 \mathrm{v}}{\mathrm{R}}$
4 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{2 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{2 \mathrm{v}}{\mathrm{R}}$
Current Electricity

151725 The resistivity of a metal is $1 \times 10^{-8} \Omega \mathrm{m}$. If it contains $9 \times 10^{28}$ electrons per $\mathrm{m}^{3}$ then the relaxation time of electrons inside the metal is nearly.
$\text { (electron mass }=9.1 \times 10^{-31} \mathrm{~kg} \text { ) }$

1 $4 \times 10^{-14} \mathrm{~s}$
2 $7 \times 10^{-14} \mathrm{~s}$
3 $1.0 \times 10^{-14} \mathrm{~s}$
4 $9 \times 10^{-14} \mathrm{~s}$
Current Electricity

151726 Find the mobility of electron in a wire, if its average collision time is $9.1 \times 10^{-15} \mathrm{~s}$.
(charge of electron $=1.6 \times 10^{-19} \mathrm{C}$ and mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$ )

1 $9.1 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
2 $1.6 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
3 $1.75 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
4 $1 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
Current Electricity

151723 A horizontal wire carries $160 \mathrm{~A}$ current below which another wire of linear density $10 \mathrm{~g} / \mathrm{m}$ carrying a current is kept at $\mathbf{4} \mathbf{~ c m}$ distance. If the wire is kept below hangs in air. What is the current in this wire when the direction of current in both the wires is same?
$\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\mu_{0}=4 \pi \times 10^{-7}$ )

1 $125 \mathrm{~A}$
2 $140 \mathrm{~A}$
3 $110 \mathrm{~A}$
4 $100 \mathrm{~A}$
Current Electricity

151724 Find the current in the three resistors as shown in the following figure?

1 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{4 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{2 \mathrm{v}}{\mathrm{R}}$
2 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=0, \mathrm{i}_{3}=0$
3 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{2 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{4 \mathrm{v}}{\mathrm{R}}$
4 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{2 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{2 \mathrm{v}}{\mathrm{R}}$
Current Electricity

151725 The resistivity of a metal is $1 \times 10^{-8} \Omega \mathrm{m}$. If it contains $9 \times 10^{28}$ electrons per $\mathrm{m}^{3}$ then the relaxation time of electrons inside the metal is nearly.
$\text { (electron mass }=9.1 \times 10^{-31} \mathrm{~kg} \text { ) }$

1 $4 \times 10^{-14} \mathrm{~s}$
2 $7 \times 10^{-14} \mathrm{~s}$
3 $1.0 \times 10^{-14} \mathrm{~s}$
4 $9 \times 10^{-14} \mathrm{~s}$
Current Electricity

151726 Find the mobility of electron in a wire, if its average collision time is $9.1 \times 10^{-15} \mathrm{~s}$.
(charge of electron $=1.6 \times 10^{-19} \mathrm{C}$ and mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$ )

1 $9.1 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
2 $1.6 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
3 $1.75 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
4 $1 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Current Electricity

151723 A horizontal wire carries $160 \mathrm{~A}$ current below which another wire of linear density $10 \mathrm{~g} / \mathrm{m}$ carrying a current is kept at $\mathbf{4} \mathbf{~ c m}$ distance. If the wire is kept below hangs in air. What is the current in this wire when the direction of current in both the wires is same?
$\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right.$ and $\mu_{0}=4 \pi \times 10^{-7}$ )

1 $125 \mathrm{~A}$
2 $140 \mathrm{~A}$
3 $110 \mathrm{~A}$
4 $100 \mathrm{~A}$
Current Electricity

151724 Find the current in the three resistors as shown in the following figure?

1 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{4 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{2 \mathrm{v}}{\mathrm{R}}$
2 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=0, \mathrm{i}_{3}=0$
3 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{2 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{4 \mathrm{v}}{\mathrm{R}}$
4 $\mathrm{i}_{1}=0, \mathrm{i}_{2}=\frac{2 \mathrm{~V}}{\mathrm{R}}, \mathrm{i}_{3}=\frac{2 \mathrm{v}}{\mathrm{R}}$
Current Electricity

151725 The resistivity of a metal is $1 \times 10^{-8} \Omega \mathrm{m}$. If it contains $9 \times 10^{28}$ electrons per $\mathrm{m}^{3}$ then the relaxation time of electrons inside the metal is nearly.
$\text { (electron mass }=9.1 \times 10^{-31} \mathrm{~kg} \text { ) }$

1 $4 \times 10^{-14} \mathrm{~s}$
2 $7 \times 10^{-14} \mathrm{~s}$
3 $1.0 \times 10^{-14} \mathrm{~s}$
4 $9 \times 10^{-14} \mathrm{~s}$
Current Electricity

151726 Find the mobility of electron in a wire, if its average collision time is $9.1 \times 10^{-15} \mathrm{~s}$.
(charge of electron $=1.6 \times 10^{-19} \mathrm{C}$ and mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$ )

1 $9.1 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
2 $1.6 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
3 $1.75 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$
4 $1 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$