03. Newton's Law of Cooling and Seebeck Effect
Heat Transfer

149651 A hot container takes $1 \mathrm{~min}$ to cool from $95^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. The time it takes to cool from $74^{\circ} \mathrm{C}$ to $54^{\circ} \mathrm{C}$ is
[Consider the room temperature as $30^{\circ} \mathrm{C}$ ]

1 $97 \mathrm{~s}$
2 $70 \mathrm{~s}$
3 $102 \mathrm{~s}$
4 $82 \mathrm{~s}$
Heat Transfer

149652 A body cools from $60{ }^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$ in the first 7 minutes and to $28^{\circ} \mathrm{C}$ in the next 7 minutes. The temperature of the surroundings is

1 $10^{\circ} \mathrm{C}$
2 $20^{\circ} \mathrm{C}$
3 $5{ }^{\circ} \mathrm{C}$
4 $30^{\circ} \mathrm{C}$
Heat Transfer

149653 One end of a metal rod of length $1.0 \mathrm{~m}$ and area of cross-section $1 \mathrm{~m}^{2}$ is maintained at $100^{\circ} \mathrm{C}$ : If the other end of the rod is maintained at $0^{\circ} \mathrm{C}$, the quantity of heat transmitted through the rod per minute is:

1 $3 \times 10^{3} \mathrm{~J}$
2 $6 \times 10^{3} \mathrm{~J}$
3 $9 \times 10^{3} \mathrm{~J}$
4 $12 \times 10^{3} \mathrm{~J}$
Heat Transfer

149654 A copper sphere cools from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 minutes and to $42^{\circ} \mathrm{C}$ in the next 10 minutes. Calculate the temperature of the surrounding.

1 $18.01^{\circ} \mathrm{C}$
2 $26^{\circ} \mathrm{C}$
3 $10.6^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
Heat Transfer

149655 A body cools in $7 \mathrm{~min}$ from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. What times (in min) does it take to cool from $40^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$, if surrounding temperature is $10^{\circ} \mathrm{C}$ ? (Assume Newton's law of cooling)

1 3.5
2 14
3 7
4 10
Heat Transfer

149651 A hot container takes $1 \mathrm{~min}$ to cool from $95^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. The time it takes to cool from $74^{\circ} \mathrm{C}$ to $54^{\circ} \mathrm{C}$ is
[Consider the room temperature as $30^{\circ} \mathrm{C}$ ]

1 $97 \mathrm{~s}$
2 $70 \mathrm{~s}$
3 $102 \mathrm{~s}$
4 $82 \mathrm{~s}$
Heat Transfer

149652 A body cools from $60{ }^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$ in the first 7 minutes and to $28^{\circ} \mathrm{C}$ in the next 7 minutes. The temperature of the surroundings is

1 $10^{\circ} \mathrm{C}$
2 $20^{\circ} \mathrm{C}$
3 $5{ }^{\circ} \mathrm{C}$
4 $30^{\circ} \mathrm{C}$
Heat Transfer

149653 One end of a metal rod of length $1.0 \mathrm{~m}$ and area of cross-section $1 \mathrm{~m}^{2}$ is maintained at $100^{\circ} \mathrm{C}$ : If the other end of the rod is maintained at $0^{\circ} \mathrm{C}$, the quantity of heat transmitted through the rod per minute is:

1 $3 \times 10^{3} \mathrm{~J}$
2 $6 \times 10^{3} \mathrm{~J}$
3 $9 \times 10^{3} \mathrm{~J}$
4 $12 \times 10^{3} \mathrm{~J}$
Heat Transfer

149654 A copper sphere cools from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 minutes and to $42^{\circ} \mathrm{C}$ in the next 10 minutes. Calculate the temperature of the surrounding.

1 $18.01^{\circ} \mathrm{C}$
2 $26^{\circ} \mathrm{C}$
3 $10.6^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
Heat Transfer

149655 A body cools in $7 \mathrm{~min}$ from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. What times (in min) does it take to cool from $40^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$, if surrounding temperature is $10^{\circ} \mathrm{C}$ ? (Assume Newton's law of cooling)

1 3.5
2 14
3 7
4 10
Heat Transfer

149651 A hot container takes $1 \mathrm{~min}$ to cool from $95^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. The time it takes to cool from $74^{\circ} \mathrm{C}$ to $54^{\circ} \mathrm{C}$ is
[Consider the room temperature as $30^{\circ} \mathrm{C}$ ]

1 $97 \mathrm{~s}$
2 $70 \mathrm{~s}$
3 $102 \mathrm{~s}$
4 $82 \mathrm{~s}$
Heat Transfer

149652 A body cools from $60{ }^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$ in the first 7 minutes and to $28^{\circ} \mathrm{C}$ in the next 7 minutes. The temperature of the surroundings is

1 $10^{\circ} \mathrm{C}$
2 $20^{\circ} \mathrm{C}$
3 $5{ }^{\circ} \mathrm{C}$
4 $30^{\circ} \mathrm{C}$
Heat Transfer

149653 One end of a metal rod of length $1.0 \mathrm{~m}$ and area of cross-section $1 \mathrm{~m}^{2}$ is maintained at $100^{\circ} \mathrm{C}$ : If the other end of the rod is maintained at $0^{\circ} \mathrm{C}$, the quantity of heat transmitted through the rod per minute is:

1 $3 \times 10^{3} \mathrm{~J}$
2 $6 \times 10^{3} \mathrm{~J}$
3 $9 \times 10^{3} \mathrm{~J}$
4 $12 \times 10^{3} \mathrm{~J}$
Heat Transfer

149654 A copper sphere cools from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 minutes and to $42^{\circ} \mathrm{C}$ in the next 10 minutes. Calculate the temperature of the surrounding.

1 $18.01^{\circ} \mathrm{C}$
2 $26^{\circ} \mathrm{C}$
3 $10.6^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
Heat Transfer

149655 A body cools in $7 \mathrm{~min}$ from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. What times (in min) does it take to cool from $40^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$, if surrounding temperature is $10^{\circ} \mathrm{C}$ ? (Assume Newton's law of cooling)

1 3.5
2 14
3 7
4 10
Heat Transfer

149651 A hot container takes $1 \mathrm{~min}$ to cool from $95^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. The time it takes to cool from $74^{\circ} \mathrm{C}$ to $54^{\circ} \mathrm{C}$ is
[Consider the room temperature as $30^{\circ} \mathrm{C}$ ]

1 $97 \mathrm{~s}$
2 $70 \mathrm{~s}$
3 $102 \mathrm{~s}$
4 $82 \mathrm{~s}$
Heat Transfer

149652 A body cools from $60{ }^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$ in the first 7 minutes and to $28^{\circ} \mathrm{C}$ in the next 7 minutes. The temperature of the surroundings is

1 $10^{\circ} \mathrm{C}$
2 $20^{\circ} \mathrm{C}$
3 $5{ }^{\circ} \mathrm{C}$
4 $30^{\circ} \mathrm{C}$
Heat Transfer

149653 One end of a metal rod of length $1.0 \mathrm{~m}$ and area of cross-section $1 \mathrm{~m}^{2}$ is maintained at $100^{\circ} \mathrm{C}$ : If the other end of the rod is maintained at $0^{\circ} \mathrm{C}$, the quantity of heat transmitted through the rod per minute is:

1 $3 \times 10^{3} \mathrm{~J}$
2 $6 \times 10^{3} \mathrm{~J}$
3 $9 \times 10^{3} \mathrm{~J}$
4 $12 \times 10^{3} \mathrm{~J}$
Heat Transfer

149654 A copper sphere cools from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 minutes and to $42^{\circ} \mathrm{C}$ in the next 10 minutes. Calculate the temperature of the surrounding.

1 $18.01^{\circ} \mathrm{C}$
2 $26^{\circ} \mathrm{C}$
3 $10.6^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
Heat Transfer

149655 A body cools in $7 \mathrm{~min}$ from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. What times (in min) does it take to cool from $40^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$, if surrounding temperature is $10^{\circ} \mathrm{C}$ ? (Assume Newton's law of cooling)

1 3.5
2 14
3 7
4 10
Heat Transfer

149651 A hot container takes $1 \mathrm{~min}$ to cool from $95^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. The time it takes to cool from $74^{\circ} \mathrm{C}$ to $54^{\circ} \mathrm{C}$ is
[Consider the room temperature as $30^{\circ} \mathrm{C}$ ]

1 $97 \mathrm{~s}$
2 $70 \mathrm{~s}$
3 $102 \mathrm{~s}$
4 $82 \mathrm{~s}$
Heat Transfer

149652 A body cools from $60{ }^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$ in the first 7 minutes and to $28^{\circ} \mathrm{C}$ in the next 7 minutes. The temperature of the surroundings is

1 $10^{\circ} \mathrm{C}$
2 $20^{\circ} \mathrm{C}$
3 $5{ }^{\circ} \mathrm{C}$
4 $30^{\circ} \mathrm{C}$
Heat Transfer

149653 One end of a metal rod of length $1.0 \mathrm{~m}$ and area of cross-section $1 \mathrm{~m}^{2}$ is maintained at $100^{\circ} \mathrm{C}$ : If the other end of the rod is maintained at $0^{\circ} \mathrm{C}$, the quantity of heat transmitted through the rod per minute is:

1 $3 \times 10^{3} \mathrm{~J}$
2 $6 \times 10^{3} \mathrm{~J}$
3 $9 \times 10^{3} \mathrm{~J}$
4 $12 \times 10^{3} \mathrm{~J}$
Heat Transfer

149654 A copper sphere cools from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 minutes and to $42^{\circ} \mathrm{C}$ in the next 10 minutes. Calculate the temperature of the surrounding.

1 $18.01^{\circ} \mathrm{C}$
2 $26^{\circ} \mathrm{C}$
3 $10.6^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
Heat Transfer

149655 A body cools in $7 \mathrm{~min}$ from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. What times (in min) does it take to cool from $40^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$, if surrounding temperature is $10^{\circ} \mathrm{C}$ ? (Assume Newton's law of cooling)

1 3.5
2 14
3 7
4 10