03. Newton's Law of Cooling and Seebeck Effect
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Heat Transfer

149633 In the Seebeck series bismuth occurs first followed by $\mathrm{Cu}$ and $\mathrm{Fe}$ among other. The $\mathrm{Sb}$ is the last in the series. If $V_{1}$ be the thermo emf at the given temperature difference for $\mathrm{Bi}$-Sb thermocouple and $V_{2}$ be that for $\mathrm{Cu}-\mathrm{Fe}$ thermocouple, then

1 $\mathrm{V}_{1}=\mathrm{V}_{2}$
2 $\mathrm{V}_{1} \lt \mathrm{V}_{2}$
3 $\mathrm{V}_{1}>\mathrm{V}_{2}$
4 data insufficient
Heat Transfer

149634 In a thermocouple, one junction which is at \(0^{\circ} \mathrm{C}\) and the other at \(t^{\circ} \mathrm{C}\), the e.m.f. is given by \(\mathbf{E}=\mathbf{a t}^2-\mathbf{b t}^3\). The neutral temperature is given by

1 $\frac{\mathrm{a}}{\mathrm{b}}$
2 $\frac{2 \mathrm{a}}{3 \mathrm{~b}}$
3 $\frac{3 \mathrm{a}}{2 \mathrm{~b}}$
4 $\frac{\mathrm{b}}{2 \mathrm{a}}$
Heat Transfer

149639 If the time taken by a hot body to cool from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is 10 min when the surrounding temperature is $25^{\circ} \mathrm{C}$, then the time taken for it to cool from $40^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ when the surrounding temperature is $15^{\circ} \mathrm{C}$, is

1 $40 \mathrm{~min}$
2 $10 \mathrm{~min}$
3 $5 \mathrm{~min}$
4 $15 \mathrm{~min}$
5 $20 \mathrm{~min}$
Heat Transfer

149640 Hot water cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in the first $10 \mathrm{~min}$ and to $42^{\circ} \mathrm{C}$ in the next $10 \mathrm{~min}$. The temperature of the surroundings is

1 $10^{\circ} \mathrm{C}$
2 $5^{\circ} \mathrm{C}$
3 $15^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
5 $22^{\circ} \mathrm{C}$
Heat Transfer

149633 In the Seebeck series bismuth occurs first followed by $\mathrm{Cu}$ and $\mathrm{Fe}$ among other. The $\mathrm{Sb}$ is the last in the series. If $V_{1}$ be the thermo emf at the given temperature difference for $\mathrm{Bi}$-Sb thermocouple and $V_{2}$ be that for $\mathrm{Cu}-\mathrm{Fe}$ thermocouple, then

1 $\mathrm{V}_{1}=\mathrm{V}_{2}$
2 $\mathrm{V}_{1} \lt \mathrm{V}_{2}$
3 $\mathrm{V}_{1}>\mathrm{V}_{2}$
4 data insufficient
Heat Transfer

149634 In a thermocouple, one junction which is at \(0^{\circ} \mathrm{C}\) and the other at \(t^{\circ} \mathrm{C}\), the e.m.f. is given by \(\mathbf{E}=\mathbf{a t}^2-\mathbf{b t}^3\). The neutral temperature is given by

1 $\frac{\mathrm{a}}{\mathrm{b}}$
2 $\frac{2 \mathrm{a}}{3 \mathrm{~b}}$
3 $\frac{3 \mathrm{a}}{2 \mathrm{~b}}$
4 $\frac{\mathrm{b}}{2 \mathrm{a}}$
Heat Transfer

149639 If the time taken by a hot body to cool from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is 10 min when the surrounding temperature is $25^{\circ} \mathrm{C}$, then the time taken for it to cool from $40^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ when the surrounding temperature is $15^{\circ} \mathrm{C}$, is

1 $40 \mathrm{~min}$
2 $10 \mathrm{~min}$
3 $5 \mathrm{~min}$
4 $15 \mathrm{~min}$
5 $20 \mathrm{~min}$
Heat Transfer

149640 Hot water cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in the first $10 \mathrm{~min}$ and to $42^{\circ} \mathrm{C}$ in the next $10 \mathrm{~min}$. The temperature of the surroundings is

1 $10^{\circ} \mathrm{C}$
2 $5^{\circ} \mathrm{C}$
3 $15^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
5 $22^{\circ} \mathrm{C}$
Heat Transfer

149633 In the Seebeck series bismuth occurs first followed by $\mathrm{Cu}$ and $\mathrm{Fe}$ among other. The $\mathrm{Sb}$ is the last in the series. If $V_{1}$ be the thermo emf at the given temperature difference for $\mathrm{Bi}$-Sb thermocouple and $V_{2}$ be that for $\mathrm{Cu}-\mathrm{Fe}$ thermocouple, then

1 $\mathrm{V}_{1}=\mathrm{V}_{2}$
2 $\mathrm{V}_{1} \lt \mathrm{V}_{2}$
3 $\mathrm{V}_{1}>\mathrm{V}_{2}$
4 data insufficient
Heat Transfer

149634 In a thermocouple, one junction which is at \(0^{\circ} \mathrm{C}\) and the other at \(t^{\circ} \mathrm{C}\), the e.m.f. is given by \(\mathbf{E}=\mathbf{a t}^2-\mathbf{b t}^3\). The neutral temperature is given by

1 $\frac{\mathrm{a}}{\mathrm{b}}$
2 $\frac{2 \mathrm{a}}{3 \mathrm{~b}}$
3 $\frac{3 \mathrm{a}}{2 \mathrm{~b}}$
4 $\frac{\mathrm{b}}{2 \mathrm{a}}$
Heat Transfer

149639 If the time taken by a hot body to cool from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is 10 min when the surrounding temperature is $25^{\circ} \mathrm{C}$, then the time taken for it to cool from $40^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ when the surrounding temperature is $15^{\circ} \mathrm{C}$, is

1 $40 \mathrm{~min}$
2 $10 \mathrm{~min}$
3 $5 \mathrm{~min}$
4 $15 \mathrm{~min}$
5 $20 \mathrm{~min}$
Heat Transfer

149640 Hot water cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in the first $10 \mathrm{~min}$ and to $42^{\circ} \mathrm{C}$ in the next $10 \mathrm{~min}$. The temperature of the surroundings is

1 $10^{\circ} \mathrm{C}$
2 $5^{\circ} \mathrm{C}$
3 $15^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
5 $22^{\circ} \mathrm{C}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Heat Transfer

149633 In the Seebeck series bismuth occurs first followed by $\mathrm{Cu}$ and $\mathrm{Fe}$ among other. The $\mathrm{Sb}$ is the last in the series. If $V_{1}$ be the thermo emf at the given temperature difference for $\mathrm{Bi}$-Sb thermocouple and $V_{2}$ be that for $\mathrm{Cu}-\mathrm{Fe}$ thermocouple, then

1 $\mathrm{V}_{1}=\mathrm{V}_{2}$
2 $\mathrm{V}_{1} \lt \mathrm{V}_{2}$
3 $\mathrm{V}_{1}>\mathrm{V}_{2}$
4 data insufficient
Heat Transfer

149634 In a thermocouple, one junction which is at \(0^{\circ} \mathrm{C}\) and the other at \(t^{\circ} \mathrm{C}\), the e.m.f. is given by \(\mathbf{E}=\mathbf{a t}^2-\mathbf{b t}^3\). The neutral temperature is given by

1 $\frac{\mathrm{a}}{\mathrm{b}}$
2 $\frac{2 \mathrm{a}}{3 \mathrm{~b}}$
3 $\frac{3 \mathrm{a}}{2 \mathrm{~b}}$
4 $\frac{\mathrm{b}}{2 \mathrm{a}}$
Heat Transfer

149639 If the time taken by a hot body to cool from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is 10 min when the surrounding temperature is $25^{\circ} \mathrm{C}$, then the time taken for it to cool from $40^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ when the surrounding temperature is $15^{\circ} \mathrm{C}$, is

1 $40 \mathrm{~min}$
2 $10 \mathrm{~min}$
3 $5 \mathrm{~min}$
4 $15 \mathrm{~min}$
5 $20 \mathrm{~min}$
Heat Transfer

149640 Hot water cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in the first $10 \mathrm{~min}$ and to $42^{\circ} \mathrm{C}$ in the next $10 \mathrm{~min}$. The temperature of the surroundings is

1 $10^{\circ} \mathrm{C}$
2 $5^{\circ} \mathrm{C}$
3 $15^{\circ} \mathrm{C}$
4 $20^{\circ} \mathrm{C}$
5 $22^{\circ} \mathrm{C}$